Divide and Conquer: High-Resolution Industrial Anomaly Detection via Memory Efficient Tiled Ensemble
- URL: http://arxiv.org/abs/2403.04932v2
- Date: Mon, 8 Apr 2024 19:45:32 GMT
- Title: Divide and Conquer: High-Resolution Industrial Anomaly Detection via Memory Efficient Tiled Ensemble
- Authors: Blaž Rolih, Dick Ameln, Ashwin Vaidya, Samet Akcay,
- Abstract summary: Industrial anomaly detection is an important task within computer vision.
Small size of anomalous regions in many real-world datasets necessitates processing the images at a high resolution.
We present the tiled ensemble approach, which reduces memory consumption by dividing the input images into a grid of tiles and training a dedicated model for each tile location.
- Score: 0.14999444543328289
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Industrial anomaly detection is an important task within computer vision with a wide range of practical use cases. The small size of anomalous regions in many real-world datasets necessitates processing the images at a high resolution. This frequently poses significant challenges concerning memory consumption during the model training and inference stages, leaving some existing methods impractical for widespread adoption. To overcome this challenge, we present the tiled ensemble approach, which reduces memory consumption by dividing the input images into a grid of tiles and training a dedicated model for each tile location. The tiled ensemble is compatible with any existing anomaly detection model without the need for any modification of the underlying architecture. By introducing overlapping tiles, we utilize the benefits of traditional stacking ensembles, leading to further improvements in anomaly detection capabilities beyond high resolution alone. We perform a comprehensive analysis using diverse underlying architectures, including Padim, PatchCore, FastFlow, and Reverse Distillation, on two standard anomaly detection datasets: MVTec and VisA. Our method demonstrates a notable improvement across setups while remaining within GPU memory constraints, consuming only as much GPU memory as a single model needs to process a single tile.
Related papers
- Cross-Domain Knowledge Distillation for Low-Resolution Human Pose Estimation [31.970739018426645]
In practical applications of human pose estimation, low-resolution inputs frequently occur, and existing state-of-the-art models perform poorly with low-resolution images.
This work focuses on boosting the performance of low-resolution models by distilling knowledge from a high-resolution model.
arXiv Detail & Related papers (2024-05-19T04:57:17Z) - Real-Time Image Segmentation via Hybrid Convolutional-Transformer Architecture Search [49.81353382211113]
We address the challenge of integrating multi-head self-attention into high resolution representation CNNs efficiently.
We develop a multi-target multi-branch supernet method, which fully utilizes the advantages of high-resolution features.
We present a series of model via Hybrid Convolutional-Transformer Architecture Search (HyCTAS) method that searched for the best hybrid combination of light-weight convolution layers and memory-efficient self-attention layers.
arXiv Detail & Related papers (2024-03-15T15:47:54Z) - Dual Memory Units with Uncertainty Regulation for Weakly Supervised
Video Anomaly Detection [15.991784541576788]
Existing approaches, both video and segment-level label oriented, mainly focus on extracting representations for anomaly data.
We propose an Uncertainty Regulated Dual Memory Units (UR-DMU) model to learn both the representations of normal data and discriminative features of abnormal data.
Our method outperforms the state-of-the-art methods by a sizable margin.
arXiv Detail & Related papers (2023-02-10T10:39:40Z) - Masked Transformer for image Anomaly Localization [14.455765147827345]
We propose a new model for image anomaly detection based on Vision Transformer architecture with patch masking.
We show that multi-resolution patches and their collective embeddings provide a large improvement in the model's performance.
The proposed model has been tested on popular anomaly detection datasets such as MVTec and head CT.
arXiv Detail & Related papers (2022-10-27T15:30:48Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
This paper addresses anomaly detection problem for videosurveillance.
Due to the inherent rarity and heterogeneity of abnormal events, the problem is viewed as a normality modeling strategy.
Our model learns object-centric normal patterns without seeing anomalous samples during training.
arXiv Detail & Related papers (2022-03-07T19:28:39Z) - Sci-Net: a Scale Invariant Model for Building Detection from Aerial
Images [0.0]
We propose a Scale-invariant neural network (Sci-Net) that is able to segment buildings present in aerial images at different spatial resolutions.
Specifically, we modified the U-Net architecture and fused it with dense Atrous Spatial Pyramid Pooling (ASPP) to extract fine-grained multi-scale representations.
arXiv Detail & Related papers (2021-11-12T16:45:20Z) - Fully Convolutional Cross-Scale-Flows for Image-based Defect Detection [24.0966076588569]
We tackle the problem of automatic defect detection without requiring any image samples of defective parts.
We propose a novel fully convolutional cross-scale normalizing flow (CS-Flow) that jointly processes multiple feature maps of different scales.
Our work sets a new state-of-the-art in image-level defect detection on the benchmark datasets Magnetic Tile Defects and MVTec AD showing a 100% AUROC on 4 out of 15 classes.
arXiv Detail & Related papers (2021-10-06T15:35:13Z) - Multi-Scale Aligned Distillation for Low-Resolution Detection [68.96325141432078]
This paper focuses on boosting the performance of low-resolution models by distilling knowledge from a high- or multi-resolution model.
On several instance-level detection tasks and datasets, the low-resolution models trained via our approach perform competitively with high-resolution models trained via conventional multi-scale training.
arXiv Detail & Related papers (2021-09-14T12:53:35Z) - CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization [59.719925639875036]
We propose a framework for building anomaly detectors using normal training data only.
We first learn self-supervised deep representations and then build a generative one-class classifier on learned representations.
Our empirical study on MVTec anomaly detection dataset demonstrates the proposed algorithm is general to be able to detect various types of real-world defects.
arXiv Detail & Related papers (2021-04-08T19:04:55Z) - Exploring Data Augmentation for Multi-Modality 3D Object Detection [82.9988604088494]
It is counter-intuitive that multi-modality methods based on point cloud and images perform only marginally better or sometimes worse than approaches that solely use point cloud.
We propose a pipeline, named transformation flow, to bridge the gap between single and multi-modality data augmentation with transformation reversing and replaying.
Our method also wins the best PKL award in the 3rd nuScenes detection challenge.
arXiv Detail & Related papers (2020-12-23T15:23:16Z) - PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and
Localization [64.39761523935613]
We present a new framework for Patch Distribution Modeling, PaDiM, to concurrently detect and localize anomalies in images.
PaDiM makes use of a pretrained convolutional neural network (CNN) for patch embedding.
It also exploits correlations between the different semantic levels of CNN to better localize anomalies.
arXiv Detail & Related papers (2020-11-17T17:29:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.