論文の概要: Efficient and Guaranteed-Safe Non-Convex Trajectory Optimization with Constrained Diffusion Model
- arxiv url: http://arxiv.org/abs/2403.05571v1
- Date: Thu, 22 Feb 2024 03:52:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 08:27:08.993761
- Title: Efficient and Guaranteed-Safe Non-Convex Trajectory Optimization with Constrained Diffusion Model
- Title(参考訳): 拘束拡散モデルを用いた効率的かつ保証された非凸軌道最適化
- Authors: Anjian Li, Zihan Ding, Adji Bousso Dieng, Ryne Beeson,
- Abstract要約: ロボット工学におけるトラティシー最適化は、複雑なダイナミクス設定に非消費的な問題を引き起こす。
従来の数値最適化手法は時間を要するが, 完全化可能な並列フレームワークを提案する。
- 参考スコア(独自算出の注目度): 9.28162057044835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trajectory optimization in robotics poses a challenging non-convex problem due to complex dynamics and environmental settings. Traditional numerical optimization methods are time-consuming in finding feasible solutions, whereas data-driven approaches lack safety guarantees for the output trajectories. In this paper, we introduce a general and fully parallelizable framework that combines diffusion models and numerical solvers for non-convex trajectory optimization, ensuring both computational efficiency and constraint satisfaction. A novel constrained diffusion model is proposed with an additional constraint violation loss for training. It aims to approximate the distribution of locally optimal solutions while minimizing constraint violations during sampling. The samples are then used as initial guesses for a numerical solver to refine and derive final solutions with formal verification of feasibility and optimality. Experimental evaluations on three tasks over different robotics domains verify the improved constraint satisfaction and computational efficiency with 4$\times$ to 22$\times$ acceleration using our proposed method, which generalizes across trajectory optimization problems and scales well with problem complexity.
- Abstract(参考訳): ロボット工学における軌道最適化は、複雑な力学と環境設定のために非凸問題を引き起こす。
従来の数値最適化手法は実現可能な解を見つけるのに時間を要するが、データ駆動方式では出力軌跡の安全保証が欠如している。
本稿では,非凸軌道最適化のための拡散モデルと数値解法を組み合わせ,計算効率と制約満足度を両立させる汎用かつ完全並列化可能なフレームワークを提案する。
新たな制約付き拡散モデルを提案する。
サンプリング時の制約違反を最小限に抑えつつ,局所最適解の分布を近似することを目的とする。
サンプルは数値解法の初期推定として使われ、実現可能性と最適性の形式的検証を伴う最終解を洗練・導出する。
異なるロボット領域に対する3つのタスクの実験的評価により, トラジェクトリ最適化問題を一般化し, 問題複雑性によく対応できる4$\times$から22$\times$Accelerrationによる制約満足度と計算効率の改善が検証された。
関連論文リスト
- Diffusion Models as Network Optimizers: Explorations and Analysis [71.69869025878856]
生成拡散モデル(GDM)は,ネットワーク最適化の新しいアプローチとして期待されている。
本研究ではまず,生成モデルの本質的な特徴について考察する。
本稿では,識別的ネットワーク最適化よりも生成モデルの利点を簡潔かつ直感的に示す。
論文 参考訳(メタデータ) (2024-11-01T09:05:47Z) - Self-Supervised Learning of Iterative Solvers for Constrained Optimization [0.0]
制約付き最適化のための学習型反復解法を提案する。
解法を特定のパラメトリック最適化問題にカスタマイズすることで、非常に高速で正確な解を得ることができる。
最適性のKarush-Kuhn-Tucker条件に基づく新しい損失関数を導入し、両ニューラルネットワークの完全な自己教師付きトレーニングを可能にする。
論文 参考訳(メタデータ) (2024-09-12T14:17:23Z) - DiffSG: A Generative Solver for Network Optimization with Diffusion Model [75.27274046562806]
拡散生成モデルはより広い範囲の解を考えることができ、学習パラメータによるより強力な一般化を示す。
拡散生成モデルの本質的な分布学習を利用して高品質な解を学習する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-13T07:56:21Z) - DISCO: Efficient Diffusion Solver for Large-Scale Combinatorial Optimization Problems [37.205311971072405]
DISCOは、大規模な組合せ最適化問題に対する効率的な拡散解法である。
サンプリング空間は、解残基によって導かれるより有意義な領域に制約され、出力分布のマルチモーダルな性質は保たれる。
大規模なトラベリングセールスマン問題や最大独立セットのベンチマークに挑戦し、他の拡散手段よりも最大5.28倍の速度で推論を行う。
論文 参考訳(メタデータ) (2024-06-28T07:36:31Z) - Diffusion Models as Constrained Samplers for Optimization with Unknown Constraints [42.47298301874283]
拡散モデルを用いてデータ多様体内で最適化を行う。
目的関数の微分可能性に応じて,2つの異なるサンプリング手法を提案する。
提案手法は,従来の最先端のベースラインよりも優れた,あるいは同等のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-02-28T03:09:12Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Reducing the Need for Backpropagation and Discovering Better Optima With
Explicit Optimizations of Neural Networks [4.807347156077897]
本稿では,ニューラルネットワークの最適化のための計算効率のよい代替案を提案する。
我々は、単純なフィードフォワード言語モデルに対する明確な解決策を導出する。
実験では,明示的な解がほぼ最適であることを示す。
論文 参考訳(メタデータ) (2023-11-13T17:38:07Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - A deep learning method for solving stochastic optimal control problems driven by fully-coupled FBSDEs [1.0703175070560689]
最初にこの問題をStackelberg微分ゲーム問題(リーダー-フォロワー問題)に変換する。
ユーティリティーモデルによる投資消費問題の2つの例を計算した。
その結果,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-04-12T13:31:19Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。