論文の概要: Geometric Neural Network based on Phase Space for BCI-EEG decoding
- arxiv url: http://arxiv.org/abs/2403.05645v3
- Date: Wed, 28 Aug 2024 15:39:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 20:59:10.329200
- Title: Geometric Neural Network based on Phase Space for BCI-EEG decoding
- Title(参考訳): BCI-EEG復号のための位相空間に基づく幾何学的ニューラルネットワーク
- Authors: Igor Carrara, Bruno Aristimunha, Marie-Constance Corsi, Raphael Y. de Camargo, Sylvain Chevallier, Théodore Papadopoulo,
- Abstract要約: ディープラーニングアルゴリズムの脳信号解析への統合は、まだ初期段階にある。
EEGは、非侵襲的で費用効果の高い性質と時間分解能に優れたため、BCIシステムを設計するための広く採用されている選択である。
本稿では、位相SPDNetアーキテクチャを提案し、その性能と結果の解釈可能性について分析する。
- 参考スコア(独自算出の注目度): 2.8196015357423376
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Objective: The integration of Deep Learning (DL) algorithms on brain signal analysis is still in its nascent stages compared to their success in fields like Computer Vision. This is particularly true for BCI, where the brain activity is decoded to control external devices without requiring muscle control. Electroencephalography (EEG) is a widely adopted choice for designing BCI systems due to its non-invasive and cost-effective nature and excellent temporal resolution. Still, it comes at the expense of limited training data, poor signal-to-noise, and a large variability across and within-subject recordings. Finally, setting up a BCI system with many electrodes takes a long time, hindering the widespread adoption of reliable DL architectures in BCIs outside research laboratories. To improve adoption, we need to improve user comfort using, for instance, reliable algorithms that operate with few electrodes. Approach: Our research aims to develop a DL algorithm that delivers effective results with a limited number of electrodes. Taking advantage of the Augmented Covariance Method and the framework of SPDNet, we propose the Phase-SPDNet architecture and analyze its performance and the interpretability of the results. The evaluation is conducted on 5-fold cross-validation, using only three electrodes positioned above the Motor Cortex. The methodology was tested on nearly 100 subjects from several open-source datasets using the Mother Of All BCI Benchmark (MOABB) framework. Main results: The results of our Phase-SPDNet demonstrate that the augmented approach combined with the SPDNet significantly outperforms all the current state-of-the-art DL architecture in MI decoding. Significance: This new architecture is explainable and with a low number of trainable parameters.
- Abstract(参考訳): 目的:脳信号解析におけるディープラーニング(DL)アルゴリズムの統合は、コンピュータビジョンのような分野での成功と比較して、まだ初期段階にある。
これはBCIにおいて特に当てはまり、脳活動は筋肉の制御を必要とせずに外部デバイスを制御するためにデコードされる。
脳波検査(EEG)は、非侵襲的で費用効果の高い性質と時間分解能の優れたBCIシステムを設計するために広く採用されている選択である。
それでも、限られたトレーニングデータ、信号とノイズの低さ、およびオブジェクト内およびオブジェクト間の大きなばらつきを犠牲にしている。
最後に、多くの電極でBCIシステムを構築するには長い時間がかかるため、研究所外のBCIで信頼性の高いDLアーキテクチャが広く採用されるのを妨げている。
採用を改善するためには、例えば、少数の電極で動作する信頼性の高いアルゴリズムを使用して、ユーザの快適さを改善する必要がある。
アプローチ: 本研究の目的は, 限られた電極数で効率的な結果を提供するDLアルゴリズムの開発である。
拡張共分散法とSPDNetの枠組みを活かして、位相SPDNetアーキテクチャを提案し、その性能と結果の解釈可能性について分析する。
評価は5倍のクロスバリデーションで行われ、モータコルテックス上に位置する電極は3つしかない。
この方法論は、MOABB(Mother Of All BCI Benchmark)フレームワークを使用して、オープンソースのデータセットから100近い被験者でテストされた。
主な結果: フェーズSPDNetの結果は、SPDNetと組み合わせた拡張アプローチがMI復号化における現在のDLアーキテクチャを著しく上回っていることを示している。
意義:この新しいアーキテクチャは説明可能で、トレーニング可能なパラメータの数は少ない。
関連論文リスト
- SupeRBNN: Randomized Binary Neural Network Using Adiabatic
Superconductor Josephson Devices [44.440915387556544]
AQFPデバイスはバイナリニューラルネットワーク(BNN)計算の優れたキャリアとして機能する。
本稿では,AQFPに基づくランダム化BNNアクセラレーションフレームワークSupeRBNNを提案する。
本稿では,ReRAMベースのBNNフレームワークのエネルギー効率を約7.8×104倍に向上することを示す。
論文 参考訳(メタデータ) (2023-09-21T16:14:42Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - PCBDet: An Efficient Deep Neural Network Object Detection Architecture
for Automatic PCB Component Detection on the Edge [48.7576911714538]
PCBDetは、最先端の推論スループットを提供するアテンションコンデンサネットワーク設計である。
他の最先端のアーキテクチャ設計に比べて優れたPCBコンポーネント検出性能を実現している。
論文 参考訳(メタデータ) (2023-01-23T04:34:25Z) - EEG-BBNet: a Hybrid Framework for Brain Biometric using Graph
Connectivity [1.1498015270151059]
我々は、畳み込みニューラルネットワーク(CNN)とグラフ畳み込みニューラルネットワーク(GCNN)を統合するハイブリッドネットワークであるEEG-BBNetを提案する。
我々のモデルは、イベント関連電位(ERP)タスクにおけるすべてのベースラインを、セッション内データを用いて平均99.26%の正確な認識率で上回ります。
論文 参考訳(メタデータ) (2022-08-17T10:18:22Z) - An intertwined neural network model for EEG classification in
brain-computer interfaces [0.6696153817334769]
脳コンピュータインタフェース(BCI)は、脳とコンピュータまたは外部装置との間の非刺激的直接的、時折双方向通信リンクである。
マルチクラスモータ画像分類における最先端性能を実現するために特別に設計されたディープニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-08-04T09:00:34Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
本稿では,脳波に基づく運動画像(MI)分類のための新しい畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
提案したCNNモデル、すなわちEEG-Inceptionは、Inception-Timeネットワークのバックボーン上に構築されている。
提案するネットワークは、生のEEG信号を入力とし、複雑なEEG信号前処理を必要としないため、エンドツーエンドの分類である。
論文 参考訳(メタデータ) (2021-01-24T19:03:10Z) - Toward Real-World BCI: CCSPNet, A Compact Subject-Independent Motor
Imagery Framework [2.0741711594051377]
従来の脳-コンピュータインタフェース(BCI)は、使用前に各ユーザーに対して完全なデータ収集、トレーニング、校正フェーズを必要とする。
大規模脳波信号データベースの運動画像(MI)パラダイムを学習するCCSPNetという,新規な主体に依存しないBCIフレームワークを提案する。
提案手法は,ウェーブレット核畳み込みニューラルネットワーク(wkcnn)と時間畳み込みニューラルネットワーク(tcnn)を適用し,脳波信号の多様なスペクトル特性を表現・抽出する。
論文 参考訳(メタデータ) (2020-12-25T12:00:47Z) - GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding
Time-resolved EEG Motor Imagery Signals [8.19994663278877]
グラフ畳み込みニューラルネットワーク(GCN)に基づく新しいディープラーニングフレームワークを提案し,生の脳波信号の復号性能を向上させる。
導入されたアプローチは、パーソナライズされた予測とグループ的な予測の両方に収束することが示されている。
論文 参考訳(メタデータ) (2020-06-16T04:57:12Z) - EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies
on Signal Sensing Technologies and Computational Intelligence Approaches and
their Applications [65.32004302942218]
Brain-Computer Interface (BCI) はユーザとシステム間の強力なコミュニケーションツールである。
近年の技術進歩は、脳波(EEG)に基づく翻訳医療用BCIへの関心が高まっている。
論文 参考訳(メタデータ) (2020-01-28T10:36:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。