論文の概要: Reinforcement Learning Paycheck Optimization for Multivariate Financial
Goals
- arxiv url: http://arxiv.org/abs/2403.06011v1
- Date: Sat, 9 Mar 2024 21:10:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-13 11:26:20.840919
- Title: Reinforcement Learning Paycheck Optimization for Multivariate Financial
Goals
- Title(参考訳): 多変量金融目標に対する強化学習報酬の最適化
- Authors: Melda Alaluf, Giulia Crippa, Sinong Geng, Zijian Jing, Nikhil
Krishnan, Sanjeev Kulkarni, Wyatt Navarro, Ronnie Sircar, Jonathan Tang
- Abstract要約: 我々は、いくつかの競合する財務目標を達成するために、収入の配分方法を検討する、給与チェック最適化について検討する。
ペイチェックの最適化には、適切な問題の定式化が欠如しているため、定量的手法が欠落している。
- 参考スコア(独自算出の注目度): 1.7767171215066757
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study paycheck optimization, which examines how to allocate income in
order to achieve several competing financial goals. For paycheck optimization,
a quantitative methodology is missing, due to a lack of a suitable problem
formulation. To deal with this issue, we formulate the problem as a utility
maximization problem. The proposed formulation is able to (i) unify different
financial goals; (ii) incorporate user preferences regarding the goals; (iii)
handle stochastic interest rates. The proposed formulation also facilitates an
end-to-end reinforcement learning solution, which is implemented on a variety
of problem settings.
- Abstract(参考訳): 我々は、いくつかの競合する財務目標を達成するために、収入の配分方法を検討する。
ペイチェック最適化では、適切な問題定式化がないため、定量的手法が欠落している。
この問題に対処するため、我々はこの問題を実用性最大化問題として定式化する。
提案された定式化は
(i)異なる金融目標を統一すること。
二 目標に係るユーザの嗜好を取り入れること。
(iii)確率金利を扱う。
提案手法は,様々な問題設定に実装されたエンドツーエンド強化学習ソリューションも支援する。
関連論文リスト
- Autoformulation of Mathematical Optimization Models Using LLMs [50.030647274271516]
商用問題解決者のための自然言語記述から最適化モデルを作成するための自動アプローチを開発する。
本稿では,(1)問題依存仮説空間の定義,(2)不確実性の下でこの空間を効率的に探索すること,(3)定式化の正しさを評価すること,の3つの課題を同定する。
論文 参考訳(メタデータ) (2024-11-03T20:41:38Z) - Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Thenフレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
本稿では,共同予測モデルを用いて観測可能特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-07T19:52:14Z) - Robust personalized pricing under uncertainty of purchase probabilities [2.9061423802698565]
予測された購入確率の不確実性を考慮したパーソナライズ価格のロバストな最適化モデルを提案する。
また、線形探索と組み合わせたラグランジアン分解アルゴリズムを開発し、大規模最適化問題に対する高品質な解を効率的に見つける。
論文 参考訳(メタデータ) (2024-07-22T02:36:19Z) - Training Greedy Policy for Proposal Batch Selection in Expensive Multi-Objective Combinatorial Optimization [52.80408805368928]
本稿では,バッチ取得のための新しいグリーディ型サブセット選択アルゴリズムを提案する。
赤蛍光タンパク質に関する実験により,提案手法は1.69倍少ないクエリでベースライン性能を達成できることが判明した。
論文 参考訳(メタデータ) (2024-06-21T05:57:08Z) - Few for Many: Tchebycheff Set Scalarization for Many-Objective Optimization [14.355588194787073]
多目的最適化は、競合する目的を1つのソリューションで最適化できない現実の多くのアプリケーションで見られる。
本稿では,多数の目的をカバーできるいくつかの代表解を見つけるために,新しいTchebycheff集合スカラー化法を提案する。
このようにして、それぞれの目的は、小さな解集合の少なくとも1つの解によってうまく対応できる。
論文 参考訳(メタデータ) (2024-05-30T03:04:57Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Data-Efficient Interactive Multi-Objective Optimization Using ParEGO [6.042269506496206]
多目的最適化は、競合する目的間の最適なトレードオフを提供する非支配的なソリューションの集合を特定することを目的としている。
実践的な応用では、意思決定者(DM)は実装すべき好みに合わせて単一のソリューションを選択する。
そこで本稿では,パレートフロントの最も好まれる領域を,高コストで評価できる2つの新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-12T15:55:51Z) - Approaching Collateral Optimization for NISQ and Quantum-Inspired
Computing [0.0]
担保最適化(Collateral optimization)とは、債務又は担保取引を満たすための金融資産の体系的な配分を指す。
一般的な目的の1つは、特定のトランザクションや取引ポートフォリオに関連するリスクを軽減するのに必要な担保コストを最小限にすることである。
論文 参考訳(メタデータ) (2023-05-25T18:01:04Z) - Diversifying Investments and Maximizing Sharpe Ratio: a novel QUBO
formulation [0.0]
本稿では,記述されたタスクに対する新しいQUBOの定式化を提案し,数学的詳細と必要な仮定を提供する。
我々は、利用可能なQUBOソルバを用いて結果を得るとともに、この用語で大規模な問題に対処するハイブリッドアプローチの振る舞いについて議論する。
論文 参考訳(メタデータ) (2023-02-23T19:15:44Z) - Multi-Objective GFlowNets [59.16787189214784]
本稿では,多目的最適化の文脈において,多様な候補を生成する問題について検討する。
薬物発見やマテリアルデザインといった機械学習の多くの応用において、目標は、競合する可能性のある目標のセットを同時に最適化する候補を生成することである。
GFlowNetsをベースとした多目的GFlowNets(MOGFNs)を提案する。
論文 参考訳(メタデータ) (2022-10-23T16:15:36Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。