Non-rigid Structure-from-Motion: Temporally-smooth Procrustean Alignment and Spatially-variant Deformation Modeling
- URL: http://arxiv.org/abs/2405.04309v2
- Date: Mon, 24 Jun 2024 01:30:48 GMT
- Title: Non-rigid Structure-from-Motion: Temporally-smooth Procrustean Alignment and Spatially-variant Deformation Modeling
- Authors: Jiawei Shi, Hui Deng, Yuchao Dai,
- Abstract summary: Non-rigid Structure-from-Motion (NRSfM) has been extensively studied and great progress has been made.
There are still key challenges that hinder their broad real-world applications.
This paper proposes to resolve the above issues from a spatial-temporal modeling perspective.
- Score: 34.606331252248886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Even though Non-rigid Structure-from-Motion (NRSfM) has been extensively studied and great progress has been made, there are still key challenges that hinder their broad real-world applications: 1) the inherent motion/rotation ambiguity requires either explicit camera motion recovery with extra constraint or complex Procrustean Alignment; 2) existing low-rank modeling of the global shape can over-penalize drastic deformations in the 3D shape sequence. This paper proposes to resolve the above issues from a spatial-temporal modeling perspective. First, we propose a novel Temporally-smooth Procrustean Alignment module that estimates 3D deforming shapes and adjusts the camera motion by aligning the 3D shape sequence consecutively. Our new alignment module remedies the requirement of complex reference 3D shape during alignment, which is more conductive to non-isotropic deformation modeling. Second, we propose a spatial-weighted approach to enforce the low-rank constraint adaptively at different locations to accommodate drastic spatially-variant deformation reconstruction better. Our modeling outperform existing low-rank based methods, and extensive experiments across different datasets validate the effectiveness of our method.
Related papers
- NeuSDFusion: A Spatial-Aware Generative Model for 3D Shape Completion, Reconstruction, and Generation [52.772319840580074]
3D shape generation aims to produce innovative 3D content adhering to specific conditions and constraints.
Existing methods often decompose 3D shapes into a sequence of localized components, treating each element in isolation.
We introduce a novel spatial-aware 3D shape generation framework that leverages 2D plane representations for enhanced 3D shape modeling.
arXiv Detail & Related papers (2024-03-27T04:09:34Z) - Motion-aware 3D Gaussian Splatting for Efficient Dynamic Scene Reconstruction [89.53963284958037]
We propose a novel motion-aware enhancement framework for dynamic scene reconstruction.
Specifically, we first establish a correspondence between 3D Gaussian movements and pixel-level flow.
For the prevalent deformation-based paradigm that presents a harder optimization problem, a transient-aware deformation auxiliary module is proposed.
arXiv Detail & Related papers (2024-03-18T03:46:26Z) - PSS-BA: LiDAR Bundle Adjustment with Progressive Spatial Smoothing [27.060381833488172]
This paper presents a LiDAR bundle adjustment with progressive spatial smoothing.
The effectiveness and robustness of our proposed approach have been validated on both simulation and real-world datasets.
arXiv Detail & Related papers (2024-03-10T07:56:54Z) - SE(3) Diffusion Model-based Point Cloud Registration for Robust 6D
Object Pose Estimation [66.16525145765604]
We introduce an SE(3) diffusion model-based point cloud registration framework for 6D object pose estimation in real-world scenarios.
Our approach formulates the 3D registration task as a denoising diffusion process, which progressively refines the pose of the source point cloud.
Experiments demonstrate that our diffusion registration framework presents outstanding pose estimation performance on the real-world TUD-L, LINEMOD, and Occluded-LINEMOD datasets.
arXiv Detail & Related papers (2023-10-26T12:47:26Z) - Unsupervised 3D Pose Estimation with Non-Rigid Structure-from-Motion
Modeling [83.76377808476039]
We propose a new modeling method for human pose deformations and design an accompanying diffusion-based motion prior.
Inspired by the field of non-rigid structure-from-motion, we divide the task of reconstructing 3D human skeletons in motion into the estimation of a 3D reference skeleton.
A mixed spatial-temporal NRSfMformer is used to simultaneously estimate the 3D reference skeleton and the skeleton deformation of each frame from 2D observations sequence.
arXiv Detail & Related papers (2023-08-18T16:41:57Z) - SceNeRFlow: Time-Consistent Reconstruction of General Dynamic Scenes [75.9110646062442]
We propose SceNeRFlow to reconstruct a general, non-rigid scene in a time-consistent manner.
Our method takes multi-view RGB videos and background images from static cameras with known camera parameters as input.
We show experimentally that, unlike prior work that only handles small motion, our method enables the reconstruction of studio-scale motions.
arXiv Detail & Related papers (2023-08-16T09:50:35Z) - Mono-STAR: Mono-camera Scene-level Tracking and Reconstruction [13.329040492332988]
We present Mono-STAR, the first real-time 3D reconstruction system that simultaneously supports semantic fusion, fast motion tracking, non-rigid object deformation, and topological change.
arXiv Detail & Related papers (2023-01-30T19:17:03Z) - SPAMs: Structured Implicit Parametric Models [30.19414242608965]
We learn Structured-implicit PArametric Models (SPAMs) as a deformable object representation that structurally decomposes non-rigid object motion into part-based disentangled representations of shape and pose.
Experiments demonstrate that our part-aware shape and pose understanding lead to state-of-the-art performance in reconstruction and tracking of depth sequences of complex deforming object motion.
arXiv Detail & Related papers (2022-01-20T12:33:46Z) - Disentangling Geometric Deformation Spaces in Generative Latent Shape
Models [5.582957809895198]
A complete representation of 3D objects requires characterizing the space of deformations in an interpretable manner.
We improve on a prior generative model of disentanglement for 3D shapes, wherein the space of object geometry is factorized into rigid orientation, non-rigid pose, and intrinsic shape.
The resulting model can be trained from raw 3D shapes, without correspondences, labels, or even rigid alignment.
arXiv Detail & Related papers (2021-02-27T06:54:31Z) - Dense Non-Rigid Structure from Motion: A Manifold Viewpoint [162.88686222340962]
Non-Rigid Structure-from-Motion (NRSfM) problem aims to recover 3D geometry of a deforming object from its 2D feature correspondences across multiple frames.
We show that our approach significantly improves accuracy, scalability, and robustness against noise.
arXiv Detail & Related papers (2020-06-15T09:15:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.