論文の概要: FieldNet: Efficient Real-Time Shadow Removal for Enhanced Vision in Field Robotics
- arxiv url: http://arxiv.org/abs/2403.08142v2
- Date: Thu, 08 May 2025 00:48:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-09 21:43:49.483537
- Title: FieldNet: Efficient Real-Time Shadow Removal for Enhanced Vision in Field Robotics
- Title(参考訳): FieldNet:フィールドロボティクスにおけるビジョン強化のための効率的なリアルタイムシャドウ除去
- Authors: Alzayat Saleh, Alex Olsen, Jake Wood, Bronson Philippa, Mostafa Rahimi Azghadi,
- Abstract要約: 本研究では、リソース制約のあるハードウェアに最適化された、リアルタイムシャドウ除去のための新しいディープラーニングフレームワークであるFieldNetを紹介する。
合成シャドウで強化された1万の自然画像のデータセットに基づいてトレーニングされたFieldNetは、ベンチマークデータセットの最先端メソッドよりも優れています。
これらの進歩は、フィールドロボティクスなどにおけるリアルタイムビジョンタスクのための堅牢で効率的なソリューションとしてFieldNetを確立している。
- 参考スコア(独自算出の注目度): 2.8444649426160304
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Shadows significantly hinder computer vision tasks in outdoor environments, particularly in field robotics, where varying lighting conditions complicate object detection and localisation. We present FieldNet, a novel deep learning framework for real-time shadow removal, optimised for resource-constrained hardware. FieldNet introduces a probabilistic enhancement module and a novel loss function to address challenges of inconsistent shadow boundary supervision and artefact generation, achieving enhanced accuracy and simplicity without requiring shadow masks during inference. Trained on a dataset of 10,000 natural images augmented with synthetic shadows, FieldNet outperforms state-of-the-art methods on benchmark datasets (ISTD, ISTD+, SRD), with up to $9$x speed improvements (66 FPS on Nvidia 2080Ti) and superior shadow removal quality (PSNR: 38.67, SSIM: 0.991). Real-world case studies in precision agriculture robotics demonstrate the practical impact of FieldNet in enhancing weed detection accuracy. These advancements establish FieldNet as a robust, efficient solution for real-time vision tasks in field robotics and beyond.
- Abstract(参考訳): 影は屋外環境、特に様々な照明条件が物体の検出と局所化を複雑にするフィールドロボティクスにおいて、コンピュータビジョンのタスクを著しく妨げている。
本研究では、リソース制約のあるハードウェアに最適化された、リアルタイムシャドウ除去のための新しいディープラーニングフレームワークであるFieldNetを紹介する。
FieldNetは、確率的拡張モジュールと新しい損失関数を導入し、一貫性のないシャドウ境界監督とアーティファクト生成の課題に対処し、推論中にシャドウマスクを必要とせず、精度と簡易性を向上する。
合成シャドウで強化された1万の自然画像のデータセットに基づいてトレーニングされたFieldNetは、ベンチマークデータセット(ISTD、ISTD+、SRD)の最先端メソッドよりも優れており、最大9ドルのスピード改善(Nvidia 2080Tiの66 FPS)と優れたシャドウ除去品質(PSNR: 38.67、SSIM:0.991)がある。
精密農業ロボティクスにおける実世界の事例研究は、雑草検出精度の向上におけるFieldNetの実践的影響を実証している。
これらの進歩は、フィールドロボティクスなどにおけるリアルタイムビジョンタスクのための堅牢で効率的なソリューションとしてFieldNetを確立している。
関連論文リスト
- MetaShadow: Object-Centered Shadow Detection, Removal, and Synthesis [64.00425120075045]
シャドウは画像編集アプリケーションでは過小評価されるか無視されることが多く、編集結果のリアリズムが制限される。
本稿では,自然画像中の影の検出・除去・制御が可能な3-in-one多元性フレームワークであるMetaShadowを紹介する。
論文 参考訳(メタデータ) (2024-12-03T18:04:42Z) - ShadowRefiner: Towards Mask-free Shadow Removal via Fast Fourier Transformer [41.008740643546226]
影に影響された画像は、しばしば色と照明の空間的な違いが顕著に現れる。
我々はFast Fourier Transformerを介してマスクレスシャドウ除去・精細ネットワーク(ShadowRefiner)を導入する。
本手法は,NTIRE 2024画像シャドウ除去チャレンジのフィデリティトラックにおいて,第2位を達成し,パーセプチュアルトラックのタイトルを獲得した。
論文 参考訳(メタデータ) (2024-04-18T03:53:33Z) - Progressive Recurrent Network for Shadow Removal [99.1928825224358]
シングルイメージのシャドー削除は、まだ解決されていない重要なタスクである。
既存のディープラーニングベースのアプローチのほとんどは、シャドウを直接削除しようとするが、シャドウをうまく扱えない。
本稿では,影を段階的に除去する簡易かつ効果的なプログレッシブ・リカレント・ネットワーク(PRNet)を提案する。
論文 参考訳(メタデータ) (2023-11-01T11:42:45Z) - ShaDocNet: Learning Spatial-Aware Tokens in Transformer for Document
Shadow Removal [53.01990632289937]
本稿では,文書陰影除去のためのトランスフォーマーモデルを提案する。
シャドウとシャドウフリーの両方の領域で、シャドウコンテキストエンコーディングとデコードを使用する。
論文 参考訳(メタデータ) (2022-11-30T01:46:29Z) - DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using
Unsupervised Domain-Classifier Guided Network [28.6541488555978]
教師なしドメイン分類器ガイド付きシャドー除去ネットワークDC-ShadowNetを提案する。
物理に基づく無影色度, シャドウロスの知覚的特徴, 境界の滑らかさに基づく新しい損失を導入した。
実験の結果,これらすべての新しいコンポーネントは,ソフトシャドウの処理だけでなく,ハードシャドウの処理にも有効であることがわかった。
論文 参考訳(メタデータ) (2022-07-21T12:04:16Z) - Shadow-Aware Dynamic Convolution for Shadow Removal [80.82708225269684]
シャドウ領域と非シャドウ領域間の相互依存を分離するための新しいシャドウ・アウェア・ダイナミック・コンボリューション(SADC)モジュールを提案する。
我々のSADCは、非シャドウ領域の色マッピングが学習しやすいという事実に触発され、軽量な畳み込みモジュールで非シャドウ領域を処理する。
我々は,非シャドウ地域からシャドウ地域への情報フローを強化するために,新しいコンボリューション内蒸留損失を開発した。
論文 参考訳(メタデータ) (2022-05-10T14:00:48Z) - UnShadowNet: Illumination Critic Guided Contrastive Learning For Shadow
Removal [14.898039056038789]
弱教師付きシャドウ除去フレームワークUnShadowNetを導入する。
イルミネーションネットワークの誘導の下で抽出した影を除去するDeShadowerネットワークで構成されている。
We show that UnShadowNet can be extended to a full-supervised set-up to to exploit the ground-truth when available。
論文 参考訳(メタデータ) (2022-03-29T11:17:02Z) - R2D: Learning Shadow Removal to Enhance Fine-Context Shadow Detection [64.10636296274168]
現在のシャドウ検出方法は、小さく、不明瞭で、ぼやけたエッジを持つシャドウ領域を検出する際には、性能が良くない。
本稿では,深層ニューラルネットワークを修復訓練(シャドウ除去)するRestore to Detect(R2D)という新しい手法を提案する。
提案手法は,近年の手法に比べて微妙なコンテキストの検出が可能でありながら,影検出性能の向上を図っている。
論文 参考訳(メタデータ) (2021-09-20T15:09:22Z) - From Shadow Generation to Shadow Removal [19.486543304598264]
シャドウ生成を弱教師付きシャドウ除去に活用するG2R-ShadowNetを提案する。
提案されたG2R-ShadowNetは3つのサブネットワークで構成されている。
特に、シャドウ生成サブネットは非シャドウ領域をシャドウ領域とスタイリングし、シャドウ除去サブネットをトレーニングするためのペアデータを生成する。
論文 参考訳(メタデータ) (2021-03-24T05:49:08Z) - Physics-based Shadow Image Decomposition for Shadow Removal [36.41558227710456]
陰影除去のための新しい深層学習法を提案する。
影形成の物理モデルにインスパイアされ、線形照明変換を用いて画像内の影効果をモデル化する。
最も困難なシャドウ除去データセットでフレームワークをトレーニングし、テストします。
論文 参考訳(メタデータ) (2020-12-23T23:06:38Z) - Self-Supervised Shadow Removal [130.6657167667636]
条件付きマスクを用いた自己教師付き学習による教師なしシングルイメージシャドウ除去ソリューションを提案する。
既存の文献とは対照的に、一対のシャドウとシャドウのない画像は必要とせず、自己スーパービジョンに頼り、画像にシャドウを取り除いて追加するために深いモデルを共同で学習する。
論文 参考訳(メタデータ) (2020-10-22T11:33:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。