論文の概要: Can physical information aid the generalization ability of Neural
Networks for hydraulic modeling?
- arxiv url: http://arxiv.org/abs/2403.08589v1
- Date: Wed, 13 Mar 2024 14:51:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-14 13:38:12.200664
- Title: Can physical information aid the generalization ability of Neural
Networks for hydraulic modeling?
- Title(参考訳): 物理情報はニューラルネットワークの一般化能力に役立つか
水理モデリングのためのネットワーク?
- Authors: Gianmarco Guglielmo, Andrea Montessori, Jean-Michel Tucny, Michele La
Rocca, Pietro Prestininzi
- Abstract要約: 河川水理学へのニューラルネットワークの適用は、データ不足に苦しむ分野にもかかわらず、未熟である。
本稿では,トレーニングフェーズに物理情報を導入することで,そのような問題を緩和することを提案する。
このようなソフトな物理情報を組み込むことで予測能力を向上できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Application of Neural Networks to river hydraulics is fledgling, despite the
field suffering from data scarcity, a challenge for machine learning
techniques. Consequently, many purely data-driven Neural Networks proved to
lack predictive capabilities. In this work, we propose to mitigate such problem
by introducing physical information into the training phase. The idea is
borrowed from Physics-Informed Neural Networks which have been recently
proposed in other contexts. Physics-Informed Neural Networks embed physical
information in the form of the residual of the Partial Differential Equations
(PDEs) governing the phenomenon and, as such, are conceived as neural solvers,
i.e. an alternative to traditional numerical solvers. Such approach is seldom
suitable for environmental hydraulics, where epistemic uncertainties are large,
and computing residuals of PDEs exhibits difficulties similar to those faced by
classical numerical methods. Instead, we envisaged the employment of Neural
Networks as neural operators, featuring physical constraints formulated without
resorting to PDEs. The proposed novel methodology shares similarities with data
augmentation and regularization. We show that incorporating such soft physical
information can improve predictive capabilities.
- Abstract(参考訳): ニューラルネットワークの河川水理学への応用は、データ不足に苦しむ分野にもかかわらず、機械学習技術の課題である。
その結果、純粋にデータ駆動型ニューラルネットワークの多くは予測能力に欠けていた。
本研究では,トレーニングフェーズに物理情報を導入することで,そのような問題を緩和することを提案する。
このアイデアは、最近他の文脈で提案された物理情報ニューラルネットワークから借用されている。
物理インフォームドニューラルネットワークは、物理情報を現象を制御している部分微分方程式(PDE)の残余の形で埋め込んでおり、従来の数値解法に代わるニューラルネットワークとして考えられている。
このような手法は、疫学的な不確実性が大きい環境水理学にはあまり適しておらず、PDEの計算残差は古典的な数値法と類似した困難を示す。
代わりに、PDEに頼らずに定式化された物理的制約を特徴とするニューラルネットワークをニューラルネットワークとして採用することを考えました。
提案手法はデータ拡張と正規化と類似性を有する。
このようなソフトな物理情報を組み込むことで予測能力を向上できることを示す。
関連論文リスト
- Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Physics-Informed Neural Networks with Hard Linear Equality Constraints [9.101849365688905]
本研究は,線形等式制約を厳格に保証する物理インフォームドニューラルネットワークKKT-hPINNを提案する。
溶融タンク炉ユニット, 抽出蒸留サブシステム, 化学プラントのアスペンモデル実験により, このモデルが予測精度をさらに高めることを示した。
論文 参考訳(メタデータ) (2024-02-11T17:40:26Z) - Multi-fidelity physics constrained neural networks for dynamical systems [16.6396704642848]
マルチスケール物理制約ニューラルネットワーク(MSPCNN)を提案する。
MSPCNNは、異なるレベルの忠実度を持つデータを統一された潜在空間に組み込む新しい手法を提供する。
従来の手法とは異なり、MSPCNNは予測モデルをトレーニングするために複数の忠実度データを使用する。
論文 参考訳(メタデータ) (2024-02-03T05:05:26Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Bayesian Physics-Informed Neural Networks for real-world nonlinear
dynamical systems [0.0]
ニューラルネットワーク、物理情報モデリング、ベイズ推論を組み合わせることで、データ、物理、不確実性を統合します。
本研究は,ニューラルネットワーク,ベイジアン推論,および両者の組み合わせの固有の長所と短所を明らかにする。
我々は、基礎となる概念や傾向が、より複雑な疾患の状況に一般化されることを期待する。
論文 参考訳(メタデータ) (2022-05-12T19:04:31Z) - Neural Implicit Representations for Physical Parameter Inference from a Single Video [49.766574469284485]
本稿では,外見モデルのためのニューラル暗黙表現と,物理現象をモデル化するためのニューラル常微分方程式(ODE)を組み合わせることを提案する。
提案モデルでは,大規模なトレーニングデータセットを必要とする既存のアプローチとは対照的に,単一のビデオから物理的パラメータを識別することが可能になる。
ニューラル暗示表現を使用することで、高解像度ビデオの処理とフォトリアリスティック画像の合成が可能になる。
論文 参考訳(メタデータ) (2022-04-29T11:55:35Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Physics-informed ConvNet: Learning Physical Field from a Shallow Neural
Network [0.180476943513092]
マルチ物理システムのモデル化と予測は、避けられないデータ不足とノイズのために依然として課題である。
物理インフォームド・コンボリューション・ネットワーク(PICN)と呼ばれる新しいフレームワークは、CNNの観点から推奨されている。
PICNは物理インフォームド機械学習において、代替のニューラルネットワークソルバとなる可能性がある。
論文 参考訳(メタデータ) (2022-01-26T14:35:58Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - Understanding and mitigating gradient pathologies in physics-informed
neural networks [2.1485350418225244]
この研究は、物理システムの結果を予測し、ノイズの多いデータから隠れた物理を発見するための物理情報ニューラルネットワークの有効性に焦点を当てる。
本稿では,モデル学習中の勾配統計を利用して,複合損失関数の異なる項間の相互作用のバランスをとる学習速度アニーリングアルゴリズムを提案する。
また、そのような勾配に耐性のある新しいニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-01-13T21:23:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。