論文の概要: Reconstruction and Simulation of Elastic Objects with Spring-Mass 3D Gaussians
- arxiv url: http://arxiv.org/abs/2403.09434v1
- Date: Thu, 14 Mar 2024 14:25:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-15 20:17:36.869271
- Title: Reconstruction and Simulation of Elastic Objects with Spring-Mass 3D Gaussians
- Title(参考訳): スプリングマス3次元ガウスによる弾性物体の復元とシミュレーション
- Authors: Licheng Zhong, Hong-Xing Yu, Jiajun Wu, Yunzhu Li,
- Abstract要約: 本稿では,3次元ガウスと物理シミュレーションを統合した新しいフレームワークであるSpring-Gausを提案する。
提案手法は3次元Spring-Massモデルを用いて,各点レベルでの物理パラメータの最適化を可能にする。
合成と実世界の両方のデータセット上でSpring-Gausを評価し,弾性物体の正確な再構成とシミュレーションを実証した。
- 参考スコア(独自算出の注目度): 23.572267290979045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstructing and simulating elastic objects from visual observations is crucial for applications in computer vision and robotics. Existing methods, such as 3D Gaussians, provide modeling for 3D appearance and geometry but lack the ability to simulate physical properties or optimize parameters for heterogeneous objects. We propose Spring-Gaus, a novel framework that integrates 3D Gaussians with physics-based simulation for reconstructing and simulating elastic objects from multi-view videos. Our method utilizes a 3D Spring-Mass model, enabling the optimization of physical parameters at the individual point level while decoupling the learning of physics and appearance. This approach achieves great sample efficiency, enhances generalization, and reduces sensitivity to the distribution of simulation particles. We evaluate Spring-Gaus on both synthetic and real-world datasets, demonstrating accurate reconstruction and simulation of elastic objects. This includes future prediction and simulation under varying initial states and environmental parameters. Project page: https://zlicheng.com/spring_gaus.
- Abstract(参考訳): 視覚的な観察から弾性物体を再構成し、シミュレーションすることは、コンピュータビジョンやロボット工学の応用に不可欠である。
3Dガウスのような既存の手法は、3Dの外観と幾何学のモデリングを提供するが、物理特性をシミュレートしたり、異種物体のパラメータを最適化する能力は欠如している。
マルチビュービデオから弾性物体を再構成・シミュレーションするための物理シミュレーションと3次元ガウスアンを統合した新しいフレームワークであるSpring-Gausを提案する。
本手法は3次元Spring-Massモデルを用いて,物理と外観の学習を分離しながら,個々の点レベルでの物理パラメータの最適化を可能にする。
このアプローチは, 試料効率が高く, 一般化を促進し, シミュレーション粒子の分布に対する感度を低下させる。
合成と実世界の両方のデータセット上でSpring-Gausを評価し,弾性物体の正確な再構成とシミュレーションを実証した。
これには、様々な初期状態と環境パラメータの下での将来の予測とシミュレーションが含まれる。
プロジェクトページ: https://zlicheng.com/spring_gaus.com
関連論文リスト
- Automated 3D Physical Simulation of Open-world Scene with Gaussian Splatting [22.40115216094332]
Sim Anythingは、静的な3Dオブジェクトにインタラクティブなダイナミクスを与える物理ベースのアプローチである。
人間の視覚的推論に触発されて,MLLMに基づく物理特性知覚を提案する。
また、物理幾何学的適応サンプリングを用いて粒子をサンプリングして、オープンワールドシーンでオブジェクトをシミュレートする。
論文 参考訳(メタデータ) (2024-11-19T12:52:21Z) - GASP: Gaussian Splatting for Physic-Based Simulations [0.42881773214459123]
既存の物理モデルでは、三角形や四面体メッシュ、マーチングキューブ、ケージメッシュなどのメッシュ機構が追加されている。
我々は3次元ガウス成分と整合するように、基底のニュートン力学を修正した。
結果の解は、ブラックボックスとして扱われるあらゆる物理エンジンに統合できる。
論文 参考訳(メタデータ) (2024-09-09T17:28:57Z) - GIC: Gaussian-Informed Continuum for Physical Property Identification and Simulation [60.33467489955188]
本稿では,視覚的観察を通して物理特性(システム同定)を推定する問題について検討する。
物理特性推定における幾何学的ガイダンスを容易にするために,我々は新しいハイブリッドフレームワークを提案する。
本研究では,3次元ガウス点集合としてオブジェクトを復元する動き分解に基づく動的3次元ガウスフレームワークを提案する。
抽出された物体表面に加えて、ガウスインフォームド連続体はシミュレーション中の物体マスクのレンダリングを可能にする。
論文 参考訳(メタデータ) (2024-06-21T07:37:17Z) - Latent Intuitive Physics: Learning to Transfer Hidden Physics from A 3D Video [58.043569985784806]
本稿では,物理シミュレーションのための伝達学習フレームワークである潜在直観物理学を紹介する。
単一の3Dビデオから流体の隠れた性質を推測し、新しいシーンで観察された流体をシミュレートすることができる。
我々は,本モデルの有効性を3つの方法で検証する: (i) 学習されたビジュアルワールド物理を用いた新しいシーンシミュレーション, (ii) 観測された流体力学の将来予測, (iii) 教師付き粒子シミュレーション。
論文 参考訳(メタデータ) (2024-06-18T16:37:44Z) - Physics3D: Learning Physical Properties of 3D Gaussians via Video Diffusion [35.71595369663293]
ビデオ拡散モデルを用いて3Dオブジェクトの様々な物理的特性を学習する新しい手法である textbfPhysics3D を提案する。
本手法では,粘弾性材料モデルに基づく高一般化物理シミュレーションシステムを設計する。
弾性材料とプラスチック材料の両方を用いて, 本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-06-06T17:59:47Z) - DreamPhysics: Learning Physical Properties of Dynamic 3D Gaussians with Video Diffusion Priors [75.83647027123119]
本稿では,映像拡散前の物体の物理的特性を学習することを提案する。
次に,物理に基づくMaterial-Point-Methodシミュレータを用いて,現実的な動きを伴う4Dコンテンツを生成する。
論文 参考訳(メタデータ) (2024-06-03T16:05:25Z) - PhysDreamer: Physics-Based Interaction with 3D Objects via Video Generation [62.53760963292465]
PhysDreamerは物理に基づくアプローチで、静的な3Dオブジェクトにインタラクティブなダイナミクスを与える。
本稿では, 弾性物体の多様な例について考察し, ユーザスタディを通じて合成された相互作用の現実性を評価する。
論文 参考訳(メタデータ) (2024-04-19T17:41:05Z) - Feature Splatting: Language-Driven Physics-Based Scene Synthesis and Editing [11.46530458561589]
物理に基づく動的シーン合成をリッチなセマンティクスと統合する手法であるFeature Splattingを導入する。
私たちの最初の貢献は、高品質でオブジェクト中心の視覚言語機能を3Dガウスに抽出する方法です。
2つ目の貢献は、粒子ベースのシミュレーターを用いて、他の静的シーンから物理ベースのダイナミクスを合成する方法である。
論文 参考訳(メタデータ) (2024-04-01T16:31:04Z) - Occlusion resistant learning of intuitive physics from videos [52.25308231683798]
人工システムの鍵となる能力は、オブジェクト間の物理的相互作用を理解し、状況の将来的な結果を予測することである。
この能力は直感的な物理学と呼ばれ、近年注目されており、ビデオシーケンスからこれらの物理規則を学ぶためのいくつかの方法が提案されている。
論文 参考訳(メタデータ) (2020-04-30T19:35:54Z) - Predicting the Physical Dynamics of Unseen 3D Objects [65.49291702488436]
インパルス力を受ける平面上での3次元物体の動的挙動の予測に焦点をあてる。
我々の手法は、訓練中に目に見えない物体の形状や初期条件に一般化することができる。
我々のモデルは物理エンジンと実世界の両方のデータによるトレーニングをサポートすることができる。
論文 参考訳(メタデータ) (2020-01-16T06:27:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。