論文の概要: Demystifying Faulty Code with LLM: Step-by-Step Reasoning for Explainable Fault Localization
- arxiv url: http://arxiv.org/abs/2403.10507v1
- Date: Fri, 15 Mar 2024 17:47:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 16:11:26.544890
- Title: Demystifying Faulty Code with LLM: Step-by-Step Reasoning for Explainable Fault Localization
- Title(参考訳): LLMによる欠陥コードのデミスティフィケーション:説明可能な故障位置推定のためのステップバイステップ推論
- Authors: Ratnadira Widyasari, Jia Wei Ang, Truong Giang Nguyen, Neil Sharma, David Lo,
- Abstract要約: 本研究では, 説明可能な断層定位のためのステップバイステップ推論について検討した。
私たちは600行の欠陥に関する説明とともに、欠陥のあるコードファイルのデータセットを作成しました。
ランダムに採取された30例中22例において,FuseFLは正しい説明が得られた。
- 参考スコア(独自算出の注目度): 5.7821087202452
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fault localization is a critical process that involves identifying specific program elements responsible for program failures. Manually pinpointing these elements, such as classes, methods, or statements, which are associated with a fault is laborious and time-consuming. To overcome this challenge, various fault localization tools have been developed. These tools typically generate a ranked list of suspicious program elements. However, this information alone is insufficient. A prior study emphasized that automated fault localization should offer a rationale. In this study, we investigate the step-by-step reasoning for explainable fault localization. We explore the potential of Large Language Models (LLM) in assisting developers in reasoning about code. We proposed FuseFL that utilizes several combinations of information to enhance the LLM results which are spectrum-based fault localization results, test case execution outcomes, and code description (i.e., explanation of what the given code is intended to do). We conducted our investigation using faulty code from Refactory dataset. First, we evaluate the performance of the automated fault localization. Our results demonstrate a more than 30% increase in the number of successfully localized faults at Top-1 compared to the baseline. To evaluate the explanations generated by FuseFL, we create a dataset of human explanations that provide step-by-step reasoning as to why specific lines of code are considered faulty. This dataset consists of 324 faulty code files, along with explanations for 600 faulty lines. Furthermore, we also conducted human studies to evaluate the explanations. We found that for 22 out of the 30 randomly sampled cases, FuseFL generated correct explanations.
- Abstract(参考訳): フォールトローカライゼーションは、プログラムの障害の原因となる特定のプログラム要素を特定することを含む重要なプロセスである。
障害に関連するクラス、メソッド、ステートメントなど、これらの要素を手動で特定することは、手間と時間を要する。
この課題を克服するために、様々な障害ローカライゼーションツールが開発されている。
これらのツールは典型的には不審なプログラム要素のランキングリストを生成する。
しかし、この情報だけでは不十分である。
以前の研究では、自動障害ローカライゼーションは合理的であるべきだと強調されていた。
本研究では,説明可能な故障位置推定のためのステップバイステップ推論について検討する。
コードを推論する開発者を支援する上で,LLM(Large Language Models)の可能性を探る。
本研究では,複数の情報の組み合わせを用いて,スペクトルベースの障害局所化結果,テストケース実行結果,およびコード記述(例えば,与えられたコードが何を意図しているかの説明)であるLLM結果を強化するFuseFLを提案する。
Refactoryデータセットの欠陥コードを用いて調査を行った。
まず,自動故障局所化の性能を評価する。
以上の結果から,Top-1における局部断層の出現率は,ベースラインに比べて30%以上増加した。
FuseFLが生成した説明を評価するために、特定の行のコードに障害がある理由をステップバイステップで推論する、人間の説明のデータセットを作成します。
このデータセットは、324の欠陥コードファイルと600の欠陥行の説明で構成されている。
また,人間による研究も実施し,その説明について検討した。
ランダムに採取された30例中22例において,FuseFLは正しい説明が得られた。
関連論文リスト
- SpecTool: A Benchmark for Characterizing Errors in Tool-Use LLMs [77.79172008184415]
SpecToolは、ツール使用タスクのLLM出力のエラーパターンを特定するための新しいベンチマークである。
もっとも顕著なLCMでも,これらの誤りパターンが出力に現れることを示す。
SPECTOOLの分析と洞察を使って、エラー軽減戦略をガイドすることができる。
論文 参考訳(メタデータ) (2024-11-20T18:56:22Z) - A Deep Dive Into Large Language Model Code Generation Mistakes: What and Why? [9.246899995643918]
大規模な言語モデルは、仕様から逸脱する欠陥コードを生成することができる。
広範囲な手動分析により, ノンシンタクティックな誤りの7つのカテゴリーが同定された。
評価の結果,LPMの誤りの原因を特定すると,ReActプロンプト技術を用いたGPT-4が最大0.65のF1スコアを達成できることがわかった。
論文 参考訳(メタデータ) (2024-11-03T02:47:03Z) - Language Agents Meet Causality -- Bridging LLMs and Causal World Models [50.79984529172807]
因果表現学習を大規模言語モデルと統合する枠組みを提案する。
このフレームワークは、自然言語表現に関連付けられた因果変数を持つ因果世界モデルを学ぶ。
本研究では,時間的スケールと環境の複雑さを考慮した因果推論と計画課題の枠組みを評価する。
論文 参考訳(メタデータ) (2024-10-25T18:36:37Z) - Understanding Defects in Generated Codes by Language Models [0.669087470775851]
本研究では,大規模言語モデルによって生成されたコードスニペットの367の欠陥を分類,解析する。
エラーカテゴリは、LLMが頻繁に失敗する重要な領域を示し、目標とする改善の必要性を強調している。
本稿では,スクラッチパッド・プロンプト・プログラム・オブ・ソート・プロンプト・チェーン・オブ・ソート・プロンプト・チェーン・オブ・ソート・プロンプト・ストラクテッド・オブ・ソート・プロンプト・オブ・ソート・プロンプト・プログラム・オブ・ソート・プロンプト・プログラム・オブ・ソート・プロンプト・プログラム・オブ・ソート・プロンプト・オブ・ソート・プロンプト・プログラム・オブ・ソート・プロンプト・オブ・ソート・プロンプト・プログラム・オブ・ソート・プロンプト・プログラム・オブ・オブ・ソート・プロンプト・プロンプト・アンド・ストラクテッド・オブ・フォーンティング(Structued Chain-of-Thought Prompting)の5つの迅速な技術技術
論文 参考訳(メタデータ) (2024-08-23T21:10:09Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - Code Prompting Elicits Conditional Reasoning Abilities in Text+Code LLMs [65.2379940117181]
自然言語の問題をコードに変換する一連のプロンプトであるコードプロンプトを導入します。
コードプロンプトは複数のLLMに対して高速に向上することがわかった。
GPT 3.5を解析した結果,入力問題のコードフォーマッティングが性能向上に不可欠であることが判明した。
論文 参考訳(メタデータ) (2024-01-18T15:32:24Z) - ConDefects: A New Dataset to Address the Data Leakage Concern for
LLM-based Fault Localization and Program Repair [22.342625625700908]
欠陥(Condefects)は、このような重複をなくすために慎重にキュレートされた、真断層の新しいデータセットである。
には1,254のJavaの欠陥プログラムと1,625のPythonの欠陥プログラムが含まれている。
障害位置と対応するコードバージョンとをペアにすることで、障害のローカライゼーションとプログラムの修正関連研究に適したものにします。
論文 参考訳(メタデータ) (2023-10-25T00:06:02Z) - Knowledge-Augmented Language Model Verification [68.6099592486075]
最近の言語モデル(LM)は、パラメータに内在化された知識を持つテキストを生成する際、印象的な能力を示している。
本稿では,知識付加型LMの出力と知識を別個の検証器で検証することを提案する。
その結果,提案した検証器は,検索と生成の誤りを効果的に識別し,LMがより現実的に正しい出力を提供できることを示した。
論文 参考訳(メタデータ) (2023-10-19T15:40:00Z) - Large Language Models for Test-Free Fault Localization [11.080712737595174]
テストカバレッジ情報なしでバグの行を特定できる言語モデルに基づくフォールトローカライズ手法を提案する。
5億5000万、60億、160億のパラメータを持つ言語モデルを、手作業でキュレートされた小さなプログラムコーパスで微調整します。
実験により、LLMAOは最先端の機械学習フォールトローカライゼーション(MLFL)ベースラインを2.3%-54.4%改善し、トップ5の結果を14.4%-35.6%改善した。
論文 参考訳(メタデータ) (2023-10-03T01:26:39Z) - A Quantitative and Qualitative Evaluation of LLM-Based Explainable Fault Localization [12.80414941523501]
AutoFLは、提案された障害位置とともに、バグの説明を生成する。
JavaとPythonの798の現実世界のバグの実験では、AutoFLはメソッドレベルのcc@1を、ベースライン上で最大233.3%改善した。
論文 参考訳(メタデータ) (2023-08-10T10:26:55Z) - Fault-Aware Neural Code Rankers [64.41888054066861]
サンプルプログラムの正しさを予測できる故障認識型ニューラルネットワークローダを提案する。
我々のフォールト・アウェア・ローダは、様々なコード生成モデルのpass@1精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2022-06-04T22:01:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。