論文の概要: QuantumLeak: Stealing Quantum Neural Networks from Cloud-based NISQ Machines
- arxiv url: http://arxiv.org/abs/2403.10790v1
- Date: Sat, 16 Mar 2024 03:42:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 21:45:00.597728
- Title: QuantumLeak: Stealing Quantum Neural Networks from Cloud-based NISQ Machines
- Title(参考訳): QuantumLeak: クラウドベースのNISQマシンによる量子ニューラルネットワークのステアリング
- Authors: Zhenxiao Fu, Min Yang, Cheng Chu, Yilun Xu, Gang Huang, Fan Chen,
- Abstract要約: 変分量子回路(VQC)は量子ニューラルネットワーク(QNN)を実装する強力なツールとなっている
よく訓練されたVQCは、クラウドベースのNoisy Intermediate Scale Quantum (NISQ)コンピュータでホストされる貴重な知的資産として機能する。
我々は,クラウドベースのNISQマシンからのQNNモデル抽出手法であるQuantumLeakを紹介する。
- 参考スコア(独自算出の注目度): 20.379144412885775
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational quantum circuits (VQCs) have become a powerful tool for implementing Quantum Neural Networks (QNNs), addressing a wide range of complex problems. Well-trained VQCs serve as valuable intellectual assets hosted on cloud-based Noisy Intermediate Scale Quantum (NISQ) computers, making them susceptible to malicious VQC stealing attacks. However, traditional model extraction techniques designed for classical machine learning models encounter challenges when applied to NISQ computers due to significant noise in current devices. In this paper, we introduce QuantumLeak, an effective and accurate QNN model extraction technique from cloud-based NISQ machines. Compared to existing classical model stealing techniques, QuantumLeak improves local VQC accuracy by 4.99\%$\sim$7.35\% across diverse datasets and VQC architectures.
- Abstract(参考訳): 変分量子回路(VQC)は量子ニューラルネットワーク(QNN)を実装する強力なツールとなり、様々な複雑な問題に対処している。
よく訓練されたVQCは、クラウドベースのNoisy Intermediate Scale Quantum (NISQ) コンピュータ上にホストされる貴重な知的資産として機能し、悪意のあるVQC盗難攻撃を受けやすい。
しかし、古典的な機械学習モデルのために設計された従来のモデル抽出技術は、現在の装置のノイズが大きいため、NISQコンピュータに適用する際の課題に直面する。
本稿では,クラウドベースのNISQマシンからのQNNモデル抽出手法であるQuantumLeakを紹介する。
既存の古典的モデルステルス技術と比較して、QuantumLeakはローカルVQCの精度を4.99\%$\sim$7.35\%改善している。
関連論文リスト
- A Quantum Leaky Integrate-and-Fire Spiking Neuron and Network [0.0]
量子ニューロモルフィックコンピューティングのための新しいソフトウェアモデルを導入する。
量子スパイクニューラルネットワーク(QSNN)と量子スパイク畳み込みニューラルネットワーク(QSCNN)の構築において,これらのニューロンを構築ブロックとして利用する。
論文 参考訳(メタデータ) (2024-07-23T11:38:06Z) - Quantum-Train: Rethinking Hybrid Quantum-Classical Machine Learning in the Model Compression Perspective [7.7063925534143705]
本稿では,量子コンピューティングと機械学習アルゴリズムを統合する新しいアプローチであるQuantum-Train(QT)フレームワークを紹介する。
QTは、古典的なマッピングモデルと並んで量子ニューラルネットワークを利用することで、顕著な結果を得る。
論文 参考訳(メタデータ) (2024-05-18T14:35:57Z) - Quafu-RL: The Cloud Quantum Computers based Quantum Reinforcement
Learning [0.0]
本研究は,BAQIS Quafu量子コンピューティングクラウド上で,少なくとも136量子ビットを備えた実デバイス上で,ベンチマーク量子強化問題を実行するための第一歩である。
実験の結果,Reinforcement Learning (RL) エージェントはトレーニング段階と推論段階の両方でわずかに緩和された目標を達成することができることがわかった。
論文 参考訳(メタデータ) (2023-05-29T09:13:50Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - Delegated variational quantum algorithms based on quantum homomorphic
encryption [69.50567607858659]
変分量子アルゴリズム(VQA)は、量子デバイス上で量子アドバンテージを達成するための最も有望な候補の1つである。
クライアントのプライベートデータは、そのような量子クラウドモデルで量子サーバにリークされる可能性がある。
量子サーバが暗号化データを計算するための新しい量子ホモモルフィック暗号(QHE)スキームが構築されている。
論文 参考訳(メタデータ) (2023-01-25T07:00:13Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Qは、量子機械学習のためのオープンソースのソフトウェアフレームワークである。
古典的な機械学習ライブラリと量子シミュレータをシームレスに統合する。
量子回路とトレーニングの進捗をリアルタイムで視覚化できるグラフィカルモードを提供する。
論文 参考訳(メタデータ) (2023-01-13T09:35:05Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
量子ニューラルネットワーク(QNN)は物理世界を理解する上で重要なツールとなっているが、その利点と限界は完全には理解されていない。
本稿では,多クラス分類タスクにおけるQCの問題依存力について検討する。
我々の研究はQNNの課題依存力に光を当て、その潜在的なメリットを評価するための実践的なツールを提供する。
論文 参考訳(メタデータ) (2022-12-29T10:46:40Z) - Scalable Quantum Convolutional Neural Networks [12.261689483681145]
我々は、スケーラブル量子畳み込みニューラルネットワーク(sQCNN)と呼ばれる量子ニューラルネットワーク(QCNN)の新バージョンを提案する。
さらに、QCの忠実度を用いて、sQCNNの性能を最大化する逆忠実度トレーニング(RF-Train)と呼ばれるsQCNNトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-26T02:07:00Z) - Theoretical Error Performance Analysis for Variational Quantum Circuit
Based Functional Regression [83.79664725059877]
本研究では,次元減少と機能回帰のためのエンドツーエンドの量子ニューラルネットワークであるTTN-VQCを提案する。
また,polyak-Lojasiewicz (PL) 条件を利用してTTN-VQCの最適化特性を特徴付ける。
論文 参考訳(メタデータ) (2022-06-08T06:54:07Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z) - Quantum-enhanced data classification with a variational entangled sensor
network [3.1083620257082707]
絡み合ったセンサーネットワーク(SLAEN)によって補助される監視学習は、古典的な機械学習アルゴリズムによって訓練されたVQCを利用する、独立したパラダイムである。
我々の研究は、NISQ時代における量子化データ処理の新たな道のりを開拓している。
論文 参考訳(メタデータ) (2020-06-22T01:22:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。