論文の概要: GAgent: An Adaptive Rigid-Soft Gripping Agent with Vision Language Models for Complex Lighting Environments
- arxiv url: http://arxiv.org/abs/2403.10850v1
- Date: Sat, 16 Mar 2024 08:10:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 21:25:31.292969
- Title: GAgent: An Adaptive Rigid-Soft Gripping Agent with Vision Language Models for Complex Lighting Environments
- Title(参考訳): GAgent:複雑な照明環境のための視覚言語モデルを用いた適応型Rigid-Softグリップエージェント
- Authors: Zhuowei Li, Miao Zhang, Xiaotian Lin, Meng Yin, Shuai Lu, Xueqian Wang,
- Abstract要約: GAgentは、VLMエージェントを介して高度な認知能力を提供し、可変剛性ソフトグリップを用いた柔軟な把握能力を提供する。
クリエイティビティの一環として、研究者たちは、重い荷物をしっかりと握りながら、いまだに魅力的な物体をつかむことのできる、様々な剛性を持つバイオニックハイブリッドソフトグリップも作った。
このインテリジェントなエージェントは、VLMベースの認知処理とバイオニックデザインを特徴としている。
- 参考スコア(独自算出の注目度): 25.224940506604707
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces GAgent: an Gripping Agent designed for open-world environments that provides advanced cognitive abilities via VLM agents and flexible grasping abilities with variable stiffness soft grippers. GAgent comprises three primary components - Prompt Engineer module, Visual-Language Model (VLM) core and Workflow module. These three modules enhance gripper success rates by recognizing objects and materials and accurately estimating grasp area even under challenging lighting conditions. As part of creativity, researchers also created a bionic hybrid soft gripper with variable stiffness capable of gripping heavy loads while still gently engaging objects. This intelligent agent, featuring VLM-based cognitive processing with bionic design, shows promise as it could potentially benefit UAVs in various scenarios.
- Abstract(参考訳): 本稿では, VLMエージェントによる高度な認知能力と, ソフトグリップを用いた柔軟な把握能力を提供する, オープンワールド環境のためのグリップエージェントであるGAgentについて紹介する。
GAgentには、Prompt Engineerモジュール、Visual-Language Model (VLM)コア、Workflowモジュールの3つの主要コンポーネントが含まれている。
これら3つのモジュールは、物体や材料を認識し、困難な照明条件下であってもグリップ面積を正確に推定することにより、グリップ成功率を高める。
クリエイティビティの一環として、研究者たちは、重い荷物をしっかりと握りながら、いまだに魅力的な物体をつかむことのできる、様々な剛性を持つバイオニックハイブリッドソフトグリップも作った。
このインテリジェントなエージェントは、VLMベースの認知処理とバイオニックデザインを特徴としている。
関連論文リスト
- AgentSquare: Automatic LLM Agent Search in Modular Design Space [16.659969168343082]
大規模言語モデル(LLM)は、幅広い複雑なタスクを処理できるエージェントシステムの急速な成長をもたらした。
Modularized LLM Agent Search (MoLAS) という新しい研究課題を紹介した。
論文 参考訳(メタデータ) (2024-10-08T15:52:42Z) - EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMAは、視覚的およびテキスト的エンコーディングを効率的に融合するために設計された軽量なクロスプラットフォームモジュールである。
EMMAは複数のタスクのパフォーマンスを最大9.3%向上させ、幻覚に対する堅牢性を大幅に向上させる。
論文 参考訳(メタデータ) (2024-10-02T23:00:31Z) - VisualAgentBench: Towards Large Multimodal Models as Visual Foundation Agents [50.12414817737912]
大規模マルチモーダルモデル(LMM)は、人工知能の新たな時代を迎え、言語と視覚の融合によって、高い能力を持つVisual Foundation Agentを形成する。
既存のベンチマークでは、複雑な実世界の環境でのLMMの可能性を十分に証明できない。
VisualAgentBench (VAB) は、視覚基礎エージェントとしてLMMを訓練し評価するための先駆的なベンチマークである。
論文 参考訳(メタデータ) (2024-08-12T17:44:17Z) - LEGENT: Open Platform for Embodied Agents [60.71847900126832]
LEGENTはLarge Language Models (LLM) とLarge Multimodal Models (LMM) を用いたエンボディエージェントを開発するためのオープンでスケーラブルなプラットフォームである。
LEGENTはリッチでインタラクティブな3D環境を提供し、コミュニケーション可能でアクション可能なエージェントをユーザフレンドリーなインターフェースと組み合わせている。
実験では、EGENT生成データに基づいて訓練された胚性視覚言語モデルが、エンボディタスクにおいてGPT-4Vを超える。
論文 参考訳(メタデータ) (2024-04-28T16:50:12Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScopeは、メッセージ交換をコアコミュニケーションメカニズムとする、開発者中心のマルチエージェントプラットフォームである。
豊富な構文ツール、組み込みエージェントとサービス機能、アプリケーションのデモとユーティリティモニタのためのユーザフレンドリなインターフェース、ゼロコードプログラミングワークステーション、自動プロンプトチューニング機構により、開発とデプロイメントの両方の障壁は大幅に低下した。
論文 参考訳(メタデータ) (2024-02-21T04:11:28Z) - MAgIC: Investigation of Large Language Model Powered Multi-Agent in
Cognition, Adaptability, Rationality and Collaboration [102.41118020705876]
大規模言語モデル(LLM)は自然言語処理の分野で大きな進歩を遂げている。
アプリケーションがマルチエージェント環境に拡張されるにつれ、包括的な評価フレームワークの必要性が高まっている。
この研究は、マルチエージェント設定内でLLMを評価するために特別に設計された新しいベンチマークフレームワークを導入している。
論文 参考訳(メタデータ) (2023-11-14T21:46:27Z) - Octopus: Embodied Vision-Language Programmer from Environmental Feedback [58.04529328728999]
身体視覚言語モデル(VLM)は多モード認識と推論において大きな進歩を遂げた。
このギャップを埋めるために、我々は、計画と操作を接続する媒体として実行可能なコード生成を使用する、具体化された視覚言語プログラマであるOctopusを紹介した。
Octopusは、1)エージェントの視覚的およびテキスト的タスクの目的を正確に理解し、2)複雑なアクションシーケンスを定式化し、3)実行可能なコードを生成するように設計されている。
論文 参考訳(メタデータ) (2023-10-12T17:59:58Z) - Toward a Plug-and-Play Vision-Based Grasping Module for Robotics [0.0]
本稿では,複数のマニピュレータ間で容易に移動可能な視覚ベースの把握フレームワークを提案する。
このフレームワークは、オープンループ把持軌跡の多様なレパートリーを生成し、把握の多様性を維持しつつ、適応性を向上させる。
論文 参考訳(メタデータ) (2023-10-06T16:16:00Z) - Gentopia: A Collaborative Platform for Tool-Augmented LLMs [21.09079715807735]
簡単な構成でエージェントを柔軟にカスタマイズできる拡張言語モデル(ALM)フレームワークであるgentopiaを提案する。
我々はまた、ユーザカスタマイズエージェントの登録と共有を可能にするパブリックプラットフォームであるgentpoolを構築した。
ジェントプールの不可欠なコンポーネントであるgentbenchは、安全性、堅牢性、効率性など、さまざまな面でユーザカスタマイズエージェントを徹底的に評価するように設計されている。
論文 参考訳(メタデータ) (2023-08-08T04:12:29Z) - Probing Emergent Semantics in Predictive Agents via Question Answering [29.123837711842995]
近年の研究では、予測モデリングがエージェントに周囲の知識を豊富に与え、複雑な環境での行動能力を向上させる方法が示されている。
本稿では,そのようなエージェントがモデルを開発する表現をデコードし,理解するための一般的なパラダイムとして,質問応答を提案する。
質問応答デコーダからエージェントへの勾配をバックプロパゲートすることなく、それらの内部状態表現を合成的(英語)質問で探索する。
論文 参考訳(メタデータ) (2020-06-01T15:27:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。