論文の概要: 3DGS-Calib: 3D Gaussian Splatting for Multimodal SpatioTemporal Calibration
- arxiv url: http://arxiv.org/abs/2403.11577v1
- Date: Mon, 18 Mar 2024 08:53:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 15:57:28.210049
- Title: 3DGS-Calib: 3D Gaussian Splatting for Multimodal SpatioTemporal Calibration
- Title(参考訳): 3DGS-Calib:マルチモーダル時空間校正のための3次元ガウススプラッティング
- Authors: Quentin Herau, Moussab Bennehar, Arthur Moreau, Nathan Piasco, Luis Roldao, Dzmitry Tsishkou, Cyrille Migniot, Pascal Vasseur, Cédric Demonceaux,
- Abstract要約: マルチモーダルキャリブレーションを実現するために,3次元ガウス平滑化の高速化と精度に依存する新しいキャリブレーション法を提案する。
我々は、広く使われている運転データセットであるKITTI-360のシーケンスに関する実験結果を用いて、提案手法の優位性を実証した。
- 参考スコア(独自算出の注目度): 9.825752747213297
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Reliable multimodal sensor fusion algorithms re- quire accurate spatiotemporal calibration. Recently, targetless calibration techniques based on implicit neural representations have proven to provide precise and robust results. Nevertheless, such methods are inherently slow to train given the high compu- tational overhead caused by the large number of sampled points required for volume rendering. With the recent introduction of 3D Gaussian Splatting as a faster alternative to implicit representation methods, we propose to leverage this new ren- dering approach to achieve faster multi-sensor calibration. We introduce 3DGS-Calib, a new calibration method that relies on the speed and rendering accuracy of 3D Gaussian Splatting to achieve multimodal spatiotemporal calibration that is accurate, robust, and with a substantial speed-up compared to methods relying on implicit neural representations. We demonstrate the superiority of our proposal with experimental results on sequences from KITTI-360, a widely used driving dataset.
- Abstract(参考訳): 信頼性のあるマルチモーダルセンサ融合アルゴリズムは正確な時空間キャリブレーションを再現する。
近年、暗黙の神経表現に基づく標的のない校正技術は、正確でロバストな結果をもたらすことが証明されている。
しかし、ボリュームレンダリングに必要な多数のサンプルポイントが原因で、コンプレーションのオーバヘッドが高いため、そのような手法は本質的に訓練が遅い。
近年,暗黙的表現手法の高速な代替として3次元ガウススプラッティングを導入することで,この新しいレン誘導手法を利用してより高速なマルチセンサキャリブレーションを実現することを提案する。
3DGS-Calibは、3Dガウススティングの速度と精度に依存する新しいキャリブレーション手法であり、暗黙のニューラル表現に依存する手法に比べて精度が高く、頑健で、かなりのスピードアップが可能なマルチモーダル時空間キャリブレーションを実現する。
我々は、広く使われている運転データセットであるKITTI-360のシーケンスに関する実験結果を用いて、提案手法の優位性を実証した。
関連論文リスト
- MVS-GS: High-Quality 3D Gaussian Splatting Mapping via Online Multi-View Stereo [9.740087094317735]
オンライン多視点ステレオ手法を用いた高品質な3DGSモデリングのための新しいフレームワークを提案する。
本手法は,局所時間窓から逐次フレームを用いてMVS深度を推定し,包括的深度改善手法を適用した。
実験の結果,本手法は最先端の高密度SLAM法より優れていた。
論文 参考訳(メタデータ) (2024-12-26T09:20:04Z) - Volumetrically Consistent 3D Gaussian Rasterization [18.84882580327324]
ビューア内であっても,スプレイティングとその近似は不要であることを示す。
我々は3DGSよりも高精度なアルファ値の導出にこの分析透過率フレームワークを用いる。
提案手法は3DGSよりも精度が高く,点数が少ない不透明な面を表す。
論文 参考訳(メタデータ) (2024-12-04T15:05:43Z) - LP-3DGS: Learning to Prune 3D Gaussian Splatting [71.97762528812187]
本稿では,トレーニング可能な2値マスクを重要度に応用し,最適プルーニング比を自動的に検出する3DGSを提案する。
実験の結果,LP-3DGSは効率と高品質の両面において良好なバランスを保っていることがわかった。
論文 参考訳(メタデータ) (2024-05-29T05:58:34Z) - MM3DGS SLAM: Multi-modal 3D Gaussian Splatting for SLAM Using Vision, Depth, and Inertial Measurements [59.70107451308687]
カメラ画像と慣性測定による地図表現に3Dガウスアンを用いることで、精度の高いSLAMが実現できることを示す。
我々の手法であるMM3DGSは、より高速なスケール認識と軌道追跡の改善により、事前レンダリングの限界に対処する。
また,カメラと慣性測定ユニットを備えた移動ロボットから収集したマルチモーダルデータセットUT-MMもリリースした。
論文 参考訳(メタデータ) (2024-04-01T04:57:41Z) - CG-SLAM: Efficient Dense RGB-D SLAM in a Consistent Uncertainty-aware 3D Gaussian Field [46.8198987091734]
本稿では,新しい不確実性を考慮した3次元ガウス場に基づく高密度RGB-D SLAMシステム,すなわちCG-SLAMを提案する。
各種データセットの実験により、CG-SLAMは、最大15Hzの追従速度で優れた追従性能とマッピング性能を達成することが示された。
論文 参考訳(メタデータ) (2024-03-24T11:19:59Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGSはStructure-from-Motion (SfM)技術によって生成されるポイントクラウドに大きく依存している。
本稿では, 3次元ガウスの密度化を導くために, プログレッシブ・プログレッシブ・プログレッシブ・ストラテジーを適用した新しい手法を提案する。
提案手法はデータセット上の3DGSを大幅に上回り,PSNRでは1.15dBの改善が見られた。
論文 参考訳(メタデータ) (2024-02-22T16:00:20Z) - GPS-Gaussian: Generalizable Pixel-wise 3D Gaussian Splatting for Real-time Human Novel View Synthesis [70.24111297192057]
我々は、文字の新たなビューをリアルタイムに合成するための新しいアプローチ、GPS-Gaussianを提案する。
提案手法は,スパースビューカメラ設定下での2K解像度のレンダリングを可能にする。
論文 参考訳(メタデータ) (2023-12-04T18:59:55Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
我々は,まず3次元ガウス表現を利用したtextbfGS-SLAM を提案する。
提案手法は,地図の最適化とRGB-Dレンダリングの大幅な高速化を実現するリアルタイム微分可能なスプレイティングレンダリングパイプラインを利用する。
提案手法は,Replica,TUM-RGBDデータセット上の既存の最先端リアルタイム手法と比較して,競争性能が向上する。
論文 参考訳(メタデータ) (2023-11-20T12:08:23Z) - DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation [55.661467968178066]
本稿では,DreamGaussianを提案する。DreamGaussianは,効率と品質を両立させる新しい3Dコンテンツ生成フレームワークである。
我々の重要な洞察は、UV空間におけるメッシュ抽出とテクスチャ改善を伴う3次元ガウススプラッティングモデルを設計することである。
ニューラル・ラジアンス・フィールドにおける占有プルーニングとは対照的に、3次元ガウスの進行的な密度化は3次元生成タスクにおいて著しく速く収束することを示した。
論文 参考訳(メタデータ) (2023-09-28T17:55:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。