論文の概要: Volumetrically Consistent 3D Gaussian Rasterization
- arxiv url: http://arxiv.org/abs/2412.03378v2
- Date: Wed, 22 Jan 2025 00:06:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 13:29:43.627326
- Title: Volumetrically Consistent 3D Gaussian Rasterization
- Title(参考訳): 体積整合3次元ガウスラスタライゼーション
- Authors: Chinmay Talegaonkar, Yash Belhe, Ravi Ramamoorthi, Nicholas Antipa,
- Abstract要約: ビューア内であっても,スプレイティングとその近似は不要であることを示す。
我々は3DGSよりも高精度なアルファ値の導出にこの分析透過率フレームワークを用いる。
提案手法は3DGSよりも精度が高く,点数が少ない不透明な面を表す。
- 参考スコア(独自算出の注目度): 18.84882580327324
- License:
- Abstract: Recently, 3D Gaussian Splatting (3DGS) has enabled photorealistic view synthesis at high inference speeds. However, its splatting-based rendering model makes several approximations to the rendering equation, reducing physical accuracy. We show that splatting and its approximations are unnecessary, even within a rasterizer; we instead volumetrically integrate 3D Gaussians directly to compute the transmittance across them analytically. We use this analytic transmittance to derive more physically-accurate alpha values than 3DGS, which can directly be used within their framework. The result is a method that more closely follows the volume rendering equation (similar to ray-tracing) while enjoying the speed benefits of rasterization. Our method represents opaque surfaces with higher accuracy and fewer points than 3DGS. This enables it to outperform 3DGS for view synthesis (measured in SSIM and LPIPS). Being volumetrically consistent also enables our method to work out of the box for tomography. We match the state-of-the-art 3DGS-based tomography method with fewer points.
- Abstract(参考訳): 近年,3次元ガウススプラッティング(3DGS)により,高推論速度で光リアルなビュー合成が可能となった。
しかし、そのスティングベースレンダリングモデルは、レンダリング方程式を幾つか近似し、物理的精度を低下させる。
我々は,ラスタライザ内においても,スプレイティングとその近似が不要であることを示し,その代わりに3次元ガウスを体積的に積分して解析的に透過率を計算する。
我々はこの解析透過率を用いて3DGSよりも物理的に精度の高いアルファ値を導出し、それらのフレームワーク内で直接使用することができる。
その結果、ラスタ化の速度効果を享受しながら、より密にボリュームレンダリング方程式(レイトレーシングと類似)に従う方法が得られた。
提案手法は3DGSよりも精度が高く,点数が少ない不透明な面を表す。
これにより、ビュー合成(SSIMとLPIPSで測定される)で3DGSを上回ります。
容積的に整合性があるため,本手法はトモグラフィーの箱から取り出すことも可能である。
我々は最先端の3DGSトモグラフィー法とより少ないポイントで一致した。
関連論文リスト
- GSplatLoc: Grounding Keypoint Descriptors into 3D Gaussian Splatting for Improved Visual Localization [1.4466437171584356]
3D Gaussian Splatting (3DGS) は、空間的特徴を持つ3次元幾何学とシーンの外観の両方をコンパクトに符号化することができる。
モデルの空間的理解を改善するために,高密度キーポイント記述子を3DGSに蒸留することを提案する。
提案手法はNeRFMatchやPNeRFLocなど,最先端のニューラル・レンダー・ポース(NRP)法を超越した手法である。
論文 参考訳(メタデータ) (2024-09-24T23:18:32Z) - Mipmap-GS: Let Gaussians Deform with Scale-specific Mipmap for Anti-aliasing Rendering [81.88246351984908]
任意のスケールでガウスを適応させる統一最適化法を提案する。
ミップマップ技術に触発されて、ターゲットスケールのための擬似基底構造を設計し、3次元ガウスアンにスケール情報を注入するスケール一貫性誘導損失を提案する。
本手法は,PSNRの3DGSを,ズームインで平均9.25dB,ズームアウトで平均10.40dBで上回っている。
論文 参考訳(メタデータ) (2024-08-12T16:49:22Z) - RaDe-GS: Rasterizing Depth in Gaussian Splatting [32.38730602146176]
Gaussian Splatting (GS) は、高品質でリアルタイムなレンダリングを実現するために、新しいビュー合成に非常に効果的であることが証明されている。
本研究は,DTUデータセット上のNeuraLangeloに匹敵するチャムファー距離誤差を導入し,元の3D GS法と同様の計算効率を維持する。
論文 参考訳(メタデータ) (2024-06-03T15:56:58Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3次元ガウススプラッティング(3DGS)は画像のレンダリングと表面再構成において有望な結果を示した。
本稿では,Sparse-viewトモグラフィ再構成のための3DGSベースのフレームワークであるR2$-Gaussianを紹介する。
論文 参考訳(メタデータ) (2024-05-31T08:39:02Z) - LP-3DGS: Learning to Prune 3D Gaussian Splatting [71.97762528812187]
本稿では,トレーニング可能な2値マスクを重要度に応用し,最適プルーニング比を自動的に検出する3DGSを提案する。
実験の結果,LP-3DGSは効率と高品質の両面において良好なバランスを保っていることがわかった。
論文 参考訳(メタデータ) (2024-05-29T05:58:34Z) - Mani-GS: Gaussian Splatting Manipulation with Triangular Mesh [44.57625460339714]
本稿では,3DGSを直接自己適応で操作する三角形メッシュを提案する。
提案手法は,高忠実度レンダリングを維持しつつ,大きな変形,局所的な操作,軟体シミュレーションを処理可能である。
論文 参考訳(メタデータ) (2024-05-28T04:13:21Z) - SAGS: Structure-Aware 3D Gaussian Splatting [53.6730827668389]
本研究では,シーンの形状を暗黙的に符号化する構造認識型ガウス散乱法(SAGS)を提案する。
SAGSは、最先端のレンダリング性能と、ベンチマークノベルビュー合成データセットのストレージ要件の削減を反映している。
論文 参考訳(メタデータ) (2024-04-29T23:26:30Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGSはStructure-from-Motion (SfM)技術によって生成されるポイントクラウドに大きく依存している。
本稿では, 3次元ガウスの密度化を導くために, プログレッシブ・プログレッシブ・プログレッシブ・ストラテジーを適用した新しい手法を提案する。
提案手法はデータセット上の3DGSを大幅に上回り,PSNRでは1.15dBの改善が見られた。
論文 参考訳(メタデータ) (2024-02-22T16:00:20Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
我々は,まず3次元ガウス表現を利用したtextbfGS-SLAM を提案する。
提案手法は,地図の最適化とRGB-Dレンダリングの大幅な高速化を実現するリアルタイム微分可能なスプレイティングレンダリングパイプラインを利用する。
提案手法は,Replica,TUM-RGBDデータセット上の既存の最先端リアルタイム手法と比較して,競争性能が向上する。
論文 参考訳(メタデータ) (2023-11-20T12:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。