論文の概要: Volumetrically Consistent 3D Gaussian Rasterization
- arxiv url: http://arxiv.org/abs/2412.03378v2
- Date: Wed, 22 Jan 2025 00:06:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 13:29:43.627326
- Title: Volumetrically Consistent 3D Gaussian Rasterization
- Title(参考訳): 体積整合3次元ガウスラスタライゼーション
- Authors: Chinmay Talegaonkar, Yash Belhe, Ravi Ramamoorthi, Nicholas Antipa,
- Abstract要約: ビューア内であっても,スプレイティングとその近似は不要であることを示す。
我々は3DGSよりも高精度なアルファ値の導出にこの分析透過率フレームワークを用いる。
提案手法は3DGSよりも精度が高く,点数が少ない不透明な面を表す。
- 参考スコア(独自算出の注目度): 18.84882580327324
- License:
- Abstract: Recently, 3D Gaussian Splatting (3DGS) has enabled photorealistic view synthesis at high inference speeds. However, its splatting-based rendering model makes several approximations to the rendering equation, reducing physical accuracy. We show that splatting and its approximations are unnecessary, even within a rasterizer; we instead volumetrically integrate 3D Gaussians directly to compute the transmittance across them analytically. We use this analytic transmittance to derive more physically-accurate alpha values than 3DGS, which can directly be used within their framework. The result is a method that more closely follows the volume rendering equation (similar to ray-tracing) while enjoying the speed benefits of rasterization. Our method represents opaque surfaces with higher accuracy and fewer points than 3DGS. This enables it to outperform 3DGS for view synthesis (measured in SSIM and LPIPS). Being volumetrically consistent also enables our method to work out of the box for tomography. We match the state-of-the-art 3DGS-based tomography method with fewer points.
- Abstract(参考訳): 近年,3次元ガウススプラッティング(3DGS)により,高推論速度で光リアルなビュー合成が可能となった。
しかし、そのスティングベースレンダリングモデルは、レンダリング方程式を幾つか近似し、物理的精度を低下させる。
我々は,ラスタライザ内においても,スプレイティングとその近似が不要であることを示し,その代わりに3次元ガウスを体積的に積分して解析的に透過率を計算する。
我々はこの解析透過率を用いて3DGSよりも物理的に精度の高いアルファ値を導出し、それらのフレームワーク内で直接使用することができる。
その結果、ラスタ化の速度効果を享受しながら、より密にボリュームレンダリング方程式(レイトレーシングと類似)に従う方法が得られた。
提案手法は3DGSよりも精度が高く,点数が少ない不透明な面を表す。
これにより、ビュー合成(SSIMとLPIPSで測定される)で3DGSを上回ります。
容積的に整合性があるため,本手法はトモグラフィーの箱から取り出すことも可能である。
我々は最先端の3DGSトモグラフィー法とより少ないポイントで一致した。
関連論文リスト
- Mipmap-GS: Let Gaussians Deform with Scale-specific Mipmap for Anti-aliasing Rendering [81.88246351984908]
任意のスケールでガウスを適応させる統一最適化法を提案する。
ミップマップ技術に触発されて、ターゲットスケールのための擬似基底構造を設計し、3次元ガウスアンにスケール情報を注入するスケール一貫性誘導損失を提案する。
本手法は,PSNRの3DGSを,ズームインで平均9.25dB,ズームアウトで平均10.40dBで上回っている。
論文 参考訳(メタデータ) (2024-08-12T16:49:22Z) - Visual SLAM with 3D Gaussian Primitives and Depth Priors Enabling Novel View Synthesis [11.236094544193605]
従来の幾何学に基づくSLAMシステムは、密度の高い3D再構成機能を持たない。
本稿では,新しいビュー合成技術である3次元ガウススプラッティングを組み込んだリアルタイムRGB-D SLAMシステムを提案する。
論文 参考訳(メタデータ) (2024-08-10T21:23:08Z) - RaDe-GS: Rasterizing Depth in Gaussian Splatting [32.38730602146176]
Gaussian Splatting (GS) は、高品質でリアルタイムなレンダリングを実現するために、新しいビュー合成に非常に効果的であることが証明されている。
本研究は,DTUデータセット上のNeuraLangeloに匹敵するチャムファー距離誤差を導入し,元の3D GS法と同様の計算効率を維持する。
論文 参考訳(メタデータ) (2024-06-03T15:56:58Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3次元ガウススプラッティング(3DGS)は画像のレンダリングと表面再構成において有望な結果を示した。
本稿では,Sparse-viewトモグラフィ再構成のための3DGSベースのフレームワークであるR2$-Gaussianを紹介する。
論文 参考訳(メタデータ) (2024-05-31T08:39:02Z) - LP-3DGS: Learning to Prune 3D Gaussian Splatting [71.97762528812187]
本稿では,トレーニング可能な2値マスクを重要度に応用し,最適プルーニング比を自動的に検出する3DGSを提案する。
実験の結果,LP-3DGSは効率と高品質の両面において良好なバランスを保っていることがわかった。
論文 参考訳(メタデータ) (2024-05-29T05:58:34Z) - MM3DGS SLAM: Multi-modal 3D Gaussian Splatting for SLAM Using Vision, Depth, and Inertial Measurements [59.70107451308687]
カメラ画像と慣性測定による地図表現に3Dガウスアンを用いることで、精度の高いSLAMが実現できることを示す。
我々の手法であるMM3DGSは、より高速なスケール認識と軌道追跡の改善により、事前レンダリングの限界に対処する。
また,カメラと慣性測定ユニットを備えた移動ロボットから収集したマルチモーダルデータセットUT-MMもリリースした。
論文 参考訳(メタデータ) (2024-04-01T04:57:41Z) - Analytic-Splatting: Anti-Aliased 3D Gaussian Splatting via Analytic Integration [49.004898985671815]
3DGSはエイリアスフリーではなく、解像度の異なるレンダリングは、ひどくぼやけたり、ジャギーになったりする可能性がある。
これは、3DGSが各ピクセルを領域ではなく孤立した単一点として扱い、ピクセルのフットプリントの変化に敏感であるからである。
本稿では、この近似を2次元のピクセルシェーディングに導入し、2D-ピクセルウィンドウ領域内のガウス積分を解析的に近似するアナリシス・スプレイティングを提案する。
論文 参考訳(メタデータ) (2024-03-17T02:06:03Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGSはStructure-from-Motion (SfM)技術によって生成されるポイントクラウドに大きく依存している。
本稿では, 3次元ガウスの密度化を導くために, プログレッシブ・プログレッシブ・プログレッシブ・ストラテジーを適用した新しい手法を提案する。
提案手法はデータセット上の3DGSを大幅に上回り,PSNRでは1.15dBの改善が見られた。
論文 参考訳(メタデータ) (2024-02-22T16:00:20Z) - pixelSplat: 3D Gaussian Splats from Image Pairs for Scalable Generalizable 3D Reconstruction [26.72289913260324]
pixelSplatは、画像のペアから3次元ガウスプリミティブによってパラメータ化された3次元放射界の再構成を学ぶフィードフォワードモデルである。
我々のモデルは、スケーラブルなトレーニングのためのリアルタイム・メモリ効率のレンダリングと、推論時の高速な3次元再構成を特徴としている。
論文 参考訳(メタデータ) (2023-12-19T17:03:50Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
我々は,まず3次元ガウス表現を利用したtextbfGS-SLAM を提案する。
提案手法は,地図の最適化とRGB-Dレンダリングの大幅な高速化を実現するリアルタイム微分可能なスプレイティングレンダリングパイプラインを利用する。
提案手法は,Replica,TUM-RGBDデータセット上の既存の最先端リアルタイム手法と比較して,競争性能が向上する。
論文 参考訳(メタデータ) (2023-11-20T12:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。