論文の概要: Single-Agent Actor Critic for Decentralized Cooperative Driving
- arxiv url: http://arxiv.org/abs/2403.11914v1
- Date: Mon, 18 Mar 2024 16:13:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 19:40:35.769803
- Title: Single-Agent Actor Critic for Decentralized Cooperative Driving
- Title(参考訳): 分散型協調運転における単エージェントアクター批判
- Authors: Shengchao Yan, Lukas König, Wolfram Burgard,
- Abstract要約: 本稿では,自律走行車における分散型協調運転政策の学習を目的とした,新しい非対称アクター批判モデルを提案する。
提案手法では,マスキングを用いたアテンションニューラルネットワークを用いて,現実の交通流の動的性質と部分観測可能性を扱う。
- 参考スコア(独自算出の注目度): 17.659812774579756
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Active traffic management incorporating autonomous vehicles (AVs) promises a future with diminished congestion and enhanced traffic flow. However, developing algorithms for real-world application requires addressing the challenges posed by continuous traffic flow and partial observability. To bridge this gap and advance the field of active traffic management towards greater decentralization, we introduce a novel asymmetric actor-critic model aimed at learning decentralized cooperative driving policies for autonomous vehicles using single-agent reinforcement learning. Our approach employs attention neural networks with masking to handle the dynamic nature of real-world traffic flow and partial observability. Through extensive evaluations against baseline controllers across various traffic scenarios, our model shows great potential for improving traffic flow at diverse bottleneck locations within the road system. Additionally, we explore the challenge associated with the conservative driving behaviors of autonomous vehicles that adhere strictly to traffic regulations. The experiment results illustrate that our proposed cooperative policy can mitigate potential traffic slowdowns without compromising safety.
- Abstract(参考訳): 自動運転車(AV)を取り入れたアクティブな交通管理は、渋滞の低減と交通の流れの強化を約束する。
しかし、現実のアプリケーションのためのアルゴリズムを開発するには、連続的なトラフィックフローと部分的な可観測性によって生じる課題に対処する必要がある。
このギャップを埋めて、より分散化に向けての積極的な交通管理の分野を推し進めるために、単エージェント強化学習を用いて自律走行車のための分散型協調運転ポリシーを学習することを目的とした、新しい非対称アクター批判モデルを導入する。
提案手法では,マスキングを用いたアテンションニューラルネットワークを用いて,現実の交通流の動的性質と部分観測可能性を扱う。
各種交通シナリオのベースラインコントローラに対する広範囲な評価を通じて,道路システム内の多様なボトルネック箇所における交通流改善の可能性を示す。
さらに、交通規制に厳格に従う自動運転車の保守的な運転行動に関わる課題についても検討する。
実験の結果,提案する協調政策は,安全を損なうことなく,潜在的な交通の減速を緩和できることが示された。
関連論文リスト
- A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - Safe Model-Based Multi-Agent Mean-Field Reinforcement Learning [48.667697255912614]
平均場強化学習は、同一エージェントの無限集団と相互作用する代表エージェントのポリシーに対処する。
モデルベースの平均場強化学習アルゴリズムであるSafe-M$3$-UCRLを提案する。
本アルゴリズムは,低需要領域におけるサービスアクセシビリティを確保しつつ,重要な領域における需要を効果的に満たす。
論文 参考訳(メタデータ) (2023-06-29T15:57:07Z) - SocialLight: Distributed Cooperation Learning towards Network-Wide
Traffic Signal Control [7.387226437589183]
SocialLightは交通信号制御のための新しいマルチエージェント強化学習手法である。
地元におけるエージェントの個人的限界貢献を推定することにより、協力的な交通規制政策を学習する。
我々は,2つの交通シミュレータの標準ベンチマークにおける最先端の交通信号制御手法に対して,トレーニングネットワークをベンチマークした。
論文 参考訳(メタデータ) (2023-04-20T12:41:25Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
本稿では,車載マイクロシミュレーションの合理化手法について述べる。
最小限の手動設計で高性能な制御戦略を発見する。
この研究は、波動緩和、交通信号、ランプ計測に類似した多くの創発的挙動を明らかにしている。
論文 参考訳(メタデータ) (2022-07-30T16:23:45Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
本稿では,コミュニケーション・センシングにおける制御戦略と現実的限界のギャップを埋める上で,模倣学習が果たす役割について考察する。
擬似学習は、車両の5%に採用されれば、局地的な観測のみを用いて、交通条件の異なるネットワークのエネルギー効率を15%向上させる政策を導出できることを示す。
論文 参考訳(メタデータ) (2022-06-28T17:08:31Z) - Learning to Help Emergency Vehicles Arrive Faster: A Cooperative
Vehicle-Road Scheduling Approach [24.505687255063986]
車両中心のスケジューリングアプローチは、緊急車両の最適経路を推奨する。
道路中心のスケジューリングアプローチは、交通状況を改善し、EVが交差点を通過するための優先度を高めることを目的としている。
本稿では,リアルタイム経路計画モジュールと協調交通信号制御モジュールを含む協調型VehIcle-roaDスケジューリング手法であるLEVIDを提案する。
論文 参考訳(メタデータ) (2022-02-20T10:25:15Z) - A Deep Reinforcement Learning Approach for Traffic Signal Control
Optimization [14.455497228170646]
非効率な信号制御手法は、交通渋滞やエネルギー浪費などの多くの問題を引き起こす可能性がある。
本稿では,アクター・クリティカル・ポリシー・グラデーション・アルゴリズムを拡張し,マルチエージェント・ディープ・決定性ポリシー・グラデーション(MADDPG)法を提案する。
論文 参考訳(メタデータ) (2021-07-13T14:11:04Z) - Courteous Behavior of Automated Vehicles at Unsignalized Intersections
via Reinforcement Learning [30.00761722505295]
深層強化学習を用いた混在交通状況における交差点における交通流の最適化手法を提案する。
我々の強化学習エージェントは、信号のない交差点で接続された自動運転車が道路の権利を放棄し、交通の流れを最適化するために他の車両に利する、集中型制御器のポリシーを学習する。
論文 参考訳(メタデータ) (2021-06-11T13:16:48Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - Scalable Multiagent Driving Policies For Reducing Traffic Congestion [32.08636346620938]
過去の研究では、AVと人間駆動車両の両方で小規模の混合交通シナリオでは、制御されたマルチエージェント運転ポリシーを実行する少数のAVが混雑を緩和できることを示しています。
本稿では,既存のアプローチをスケールアップし,より複雑なシナリオにおいてavのための新しいマルチエージェント駆動ポリシを開発する。
論文 参考訳(メタデータ) (2021-02-26T21:29:55Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
交通信号制御は、交差点を横断する交通信号を調整し、地域や都市の交通効率を向上させることを目的としている。
近年,交通信号制御に深部強化学習(RL)を適用し,各信号がエージェントとみなされる有望な性能を示した。
本稿では,近隣情報を考慮した各交差点の分散化政策を潜時的に学習するメタ変動固有モチベーション(MetaVIM)RL法を提案する。
論文 参考訳(メタデータ) (2021-01-04T03:06:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。