論文の概要: Sim2Real in Reconstructive Spectroscopy: Deep Learning with Augmented Device-Informed Data Simulation
- arxiv url: http://arxiv.org/abs/2403.12354v2
- Date: Fri, 14 Jun 2024 23:35:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 05:17:19.382342
- Title: Sim2Real in Reconstructive Spectroscopy: Deep Learning with Augmented Device-Informed Data Simulation
- Title(参考訳): Sim2Real in Reconstructive Spectroscopy: Augmented Device-Informed Data Simulationによるディープラーニング
- Authors: Jiyi Chen, Pengyu Li, Yutong Wang, Pei-Cheng Ku, Qing Qu,
- Abstract要約: 本研究は、再構成分光におけるスペクトル信号再構成のためのディープラーニングフレームワークであるSim2Realを提案する。
これは、デバイスインフォームド・シミュレートされたデータのみをトレーニングに利用できる極端な設定の下で、現実世界のスペクトル信号を再構築するという課題に焦点を当てている。
- 参考スコア(独自算出の注目度): 23.24059547710097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work proposes a deep learning (DL)-based framework, namely Sim2Real, for spectral signal reconstruction in reconstructive spectroscopy, focusing on efficient data sampling and fast inference time. The work focuses on the challenge of reconstructing real-world spectral signals under the extreme setting where only device-informed simulated data are available for training. Such device-informed simulated data are much easier to collect than real-world data but exhibit large distribution shifts from their real-world counterparts. To leverage such simulated data effectively, a hierarchical data augmentation strategy is introduced to mitigate the adverse effects of this domain shift, and a corresponding neural network for the spectral signal reconstruction with our augmented data is designed. Experiments using a real dataset measured from our spectrometer device demonstrate that Sim2Real achieves significant speed-up during the inference while attaining on-par performance with the state-of-the-art optimization-based methods.
- Abstract(参考訳): 本研究は,効率的なデータサンプリングと高速推論時間に着目し,再構成分光におけるスペクトル信号再構成のための深層学習(DL)ベースのフレームワークであるSim2Realを提案する。
この研究は、デバイスインフォームド・シミュレートされたデータのみをトレーニングに利用できる極端な設定の下で、現実世界のスペクトル信号を再構築するという課題に焦点を当てている。
このようなデバイスインフォームド・シミュレートされたデータは、実際のデータよりもはるかに容易に収集できるが、実際のデータから大きな分散シフトを示す。
このようなシミュレーションデータを効果的に活用するために、このドメインシフトの悪影響を軽減するために階層的なデータ拡張戦略を導入し、我々の拡張データによるスペクトル信号再構成のための対応するニューラルネットワークを設計する。
我々の分光計装置から測定した実データを用いて実験したところ、Sim2Realは、最先端の最適化手法でオンパー性能を達成しつつ、推論中にかなりのスピードアップを達成することがわかった。
関連論文リスト
- Domain-Transferred Synthetic Data Generation for Improving Monocular Depth Estimation [9.812476193015488]
本稿では,3次元合成環境とCycleGANドメイン転送を用いたシミュレーションデータ生成手法を提案する。
本研究では,DenseDepth構造に基づく深度推定モデルを実データと模擬データの異なるトレーニングセットを用いて学習することにより,このデータ生成手法を,人気のNYUDepth V2データセットと比較する。
本稿では,Huskyロボットによる新たに収集した画像とLiDAR深度データを用いたモデルの性能評価を行い,GAN変換データを実世界のデータ,特に深度推定の有効な代替手段として有効であることを示す。
論文 参考訳(メタデータ) (2024-05-02T09:21:10Z) - RaSim: A Range-aware High-fidelity RGB-D Data Simulation Pipeline for Real-world Applications [55.24463002889]
我々は深度データ合成に焦点をあて、レンジ対応RGB-Dデータシミュレーションパイプライン(RaSim)を開発した。
特に、実世界のセンサーの撮像原理を模倣して高忠実度深度データを生成する。
RaSimは、下流のRGB-D知覚タスクで微調整をすることなく、現実世界のシナリオに直接適用することができる。
論文 参考訳(メタデータ) (2024-04-05T08:52:32Z) - The Devil in the Details: Simple and Effective Optical Flow Synthetic
Data Generation [19.945859289278534]
本稿では,光学フローデータセットの要求特性が比較的単純であり,簡易な合成データ生成法を提案する。
2次元動きに基づくデータセットでは、合成データセットを生成するための最も単純だが重要な要素を体系的に分析する。
論文 参考訳(メタデータ) (2023-08-14T18:01:45Z) - Diffusion Dataset Generation: Towards Closing the Sim2Real Gap for
Pedestrian Detection [0.11470070927586014]
本稿では,歩行者検出作業において,シミュリアルなギャップを埋めるための新しい合成データ生成法を提案する。
提案手法は拡散型アーキテクチャを用いて実世界の分布を学習し,一度学習するとデータセットを生成する。
本研究では,実世界データにおける歩行者検出モデルにおいて,生成データとシミュレーションデータの組み合わせによるトレーニングにより,平均精度が27.3%向上することを示す。
論文 参考訳(メタデータ) (2023-05-16T12:33:51Z) - Quantifying the LiDAR Sim-to-Real Domain Shift: A Detailed Investigation
Using Object Detectors and Analyzing Point Clouds at Target-Level [1.1999555634662635]
自律運転のためのニューラルネットワークに基づくLiDARオブジェクト検出アルゴリズムは、トレーニング、検証、テストのために大量のデータを必要とする。
ニューラルネットワークのトレーニングにシミュレーションデータを使用することで、シーン、シナリオ、分布の違いによるトレーニングデータとテストデータのドメインシフトが生じることを示す。
論文 参考訳(メタデータ) (2023-03-03T12:52:01Z) - Synthetic Wave-Geometric Impulse Responses for Improved Speech
Dereverberation [69.1351513309953]
室内インパルス応答 (RIR) の低周波成分を正確にシミュレートすることが, 良好な脱ヴァーベレーションを実現する上で重要であることを示す。
本研究では, ハイブリッド合成RIRで訓練された音声残響モデルが, 従来の幾何線トレーシング法により学習されたRIRで訓練されたモデルよりも優れていたことを示す。
論文 参考訳(メタデータ) (2022-12-10T20:15:23Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
リアルLiDARセンサのデータ駆動シミュレーションのためのパイプラインを提案する。
本モデルでは, 透明表面上の落下点などの現実的な効果を符号化できることが示される。
我々は2つの異なるLiDARセンサのモデルを学習し、それに従ってシミュレーションされたLiDARデータを改善する。
論文 参考訳(メタデータ) (2022-09-22T13:12:54Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z) - A Novel Approach For Analysis of Distributed Acoustic Sensing System
Based on Deep Transfer Learning [0.0]
畳み込みニューラルネットワークは、空間情報を抽出するための非常に有能なツールである。
LSTM(Long-Short term memory)は、シーケンシャルデータを処理するための有効な機器である。
我々のフレームワークのVGG-16アーキテクチャは、50のトレーニングで100%の分類精度が得られる。
論文 参考訳(メタデータ) (2022-06-24T19:56:01Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
仮想データから絶対スケールを取得するための新しいフレームワークであるVRVOを提案する。
まず、モノクロ実画像とステレオ仮想データの両方を用いて、スケール対応の異種ネットワークをトレーニングする。
結果として生じるスケール一貫性の相違は、直接VOシステムと統合される。
論文 参考訳(メタデータ) (2022-03-11T01:51:54Z) - Neural BRDF Representation and Importance Sampling [79.84316447473873]
本稿では,リフレクタンスBRDFデータのコンパクトニューラルネットワークに基づく表現について述べる。
BRDFを軽量ネットワークとしてエンコードし、適応角サンプリングによるトレーニングスキームを提案する。
複数の実世界のデータセットから等方性および異方性BRDFの符号化結果を評価する。
論文 参考訳(メタデータ) (2021-02-11T12:00:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。