論文の概要: EmoVOCA: Speech-Driven Emotional 3D Talking Heads
- arxiv url: http://arxiv.org/abs/2403.12886v1
- Date: Tue, 19 Mar 2024 16:33:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 13:24:34.142578
- Title: EmoVOCA: Speech-Driven Emotional 3D Talking Heads
- Title(参考訳): EmoVOCA: 音声駆動型感情型3Dトーキングヘッド
- Authors: Federico Nocentini, Claudio Ferrari, Stefano Berretti,
- Abstract要約: EmoVOCAと呼ばれる合成データセットを作成するための革新的なデータ駆動手法を提案する。
次に,3次元顔,音声ファイル,感情ラベル,強度値を入力として受け入れる感情的3次元音声ヘッドジェネレータを設計,訓練し,顔の表情特性で音声同期唇の動きをアニメーション化することを学ぶ。
- 参考スコア(独自算出の注目度): 12.161006152509653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The domain of 3D talking head generation has witnessed significant progress in recent years. A notable challenge in this field consists in blending speech-related motions with expression dynamics, which is primarily caused by the lack of comprehensive 3D datasets that combine diversity in spoken sentences with a variety of facial expressions. Whereas literature works attempted to exploit 2D video data and parametric 3D models as a workaround, these still show limitations when jointly modeling the two motions. In this work, we address this problem from a different perspective, and propose an innovative data-driven technique that we used for creating a synthetic dataset, called EmoVOCA, obtained by combining a collection of inexpressive 3D talking heads and a set of 3D expressive sequences. To demonstrate the advantages of this approach, and the quality of the dataset, we then designed and trained an emotional 3D talking head generator that accepts a 3D face, an audio file, an emotion label, and an intensity value as inputs, and learns to animate the audio-synchronized lip movements with expressive traits of the face. Comprehensive experiments, both quantitative and qualitative, using our data and generator evidence superior ability in synthesizing convincing animations, when compared with the best performing methods in the literature. Our code and pre-trained model will be made available.
- Abstract(参考訳): 3Dトーキングヘッドジェネレーションの領域は、近年大きく進歩している。
この分野における顕著な課題は、音声関連運動と表現力学をブレンドすることであり、これは主に、音声文の多様性と様々な表情を組み合わせた包括的3Dデータセットが欠如していることに起因する。
文献は2Dビデオデータとパラメトリックな3Dモデルを回避策として活用しようとしたが、これらは2つの動きを共同でモデル化する際の限界を示している。
本研究では,この課題を異なる視点から解決し,非表現的3次元音声ヘッドの集合と3次元表現的シーケンスの集合を組み合わせた合成データセット(EmoVOCA)の作成に使用した,革新的なデータ駆動手法を提案する。
このアプローチの利点とデータセットの品質を実証するため,我々は,3次元顔,音声ファイル,感情ラベル,強度値を入力として受け入れる感情的3次元音声ヘッドジェネレータを設計,訓練し,表情の表現特性で音声同期唇の動きをアニメーション化することを学ぶ。
我々のデータとジェネレータを用いた総合的な実験は、文献でもっとも優れた手法と比較して、説得力のあるアニメーションを合成する能力に優れていた。
コードと事前訓練されたモデルを利用可能にします。
関連論文リスト
- MMHead: Towards Fine-grained Multi-modal 3D Facial Animation [68.04052669266174]
大規模なマルチモーダル3次元顔アニメーションデータセットMMHeadを構築した。
MMHeadは、49時間の3D顔の動きシーケンス、音声、リッチな階層的なテキストアノテーションで構成されている。
MMHeadデータセットに基づいて,テキストによる3次元対話ヘッドアニメーションとテキストから3次元の顔の動き生成という,2つの新しいタスクのベンチマークを構築した。
論文 参考訳(メタデータ) (2024-10-10T09:37:01Z) - Emo3D: Metric and Benchmarking Dataset for 3D Facial Expression Generation from Emotion Description [3.52270271101496]
Emo3Dは、人間の感情の幅広い範囲にまたがる広範な「テキスト画像表現データセット」である。
我々は多種多様なテキスト記述を生成し、感情表現の幅広い範囲を捉えやすくする。
エモ3D」はアニメーションデザイン、バーチャルリアリティ、感情的な人間とコンピュータのインタラクションに優れた応用がある。
論文 参考訳(メタデータ) (2024-10-02T21:31:24Z) - Story3D-Agent: Exploring 3D Storytelling Visualization with Large Language Models [57.30913211264333]
提案するStory3D-Agentは、提供された物語を3Dレンダリングの可視化に変換する先駆的なアプローチである。
プロシージャモデリングを統合することで,複数文字の動作や動きを正確に制御できるだけでなく,多様な装飾的要素も利用できる。
我々は,ストーリー3D-Agentを徹底的に評価し,その有効性を検証し,3Dストーリー表現を前進させるための基本的な枠組みを提供した。
論文 参考訳(メタデータ) (2024-08-21T17:43:15Z) - EmoTalk3D: High-Fidelity Free-View Synthesis of Emotional 3D Talking Head [30.138347111341748]
本稿では,3次元音声頭部を制御可能な感情で合成する新しい手法を提案する。
本モデルでは,生成した音声の感情を制御可能とし,広視野で表現することができる。
実験により,高忠実度・感情制御可能な3次元音声頭部の創出におけるアプローチの有効性を実証した。
論文 参考訳(メタデータ) (2024-08-01T05:46:57Z) - FaceTalk: Audio-Driven Motion Diffusion for Neural Parametric Head Models [85.16273912625022]
音声信号から人間の頭部の高忠実度3次元動作系列を合成するための新しい生成手法であるFaceTalkを紹介する。
我々の知る限りでは、人間の頭部の現実的で高品質な運動合成のための生成的アプローチを提案するのはこれが初めてである。
論文 参考訳(メタデータ) (2023-12-13T19:01:07Z) - Pose-Controllable 3D Facial Animation Synthesis using Hierarchical
Audio-Vertex Attention [52.63080543011595]
階層型音声頂点アテンションを利用してポーズ制御可能な3次元顔アニメーション合成法を提案する。
提案手法により,よりリアルな表情と頭部姿勢運動が得られる。
論文 参考訳(メタデータ) (2023-02-24T09:36:31Z) - Generating Holistic 3D Human Motion from Speech [97.11392166257791]
同期音声を用いた3次元全体体メッシュの高品質データセットを構築した。
次に,顔,体,手が別々にモデル化される新しい音声合成フレームワークを定義する。
論文 参考訳(メタデータ) (2022-12-08T17:25:19Z) - SadTalker: Learning Realistic 3D Motion Coefficients for Stylized
Audio-Driven Single Image Talking Face Animation [33.651156455111916]
本稿では,3DMMの3次元動き係数(頭部ポーズ,表情)を音声から生成するSadTalkerを提案する。
正確には、3Dレンダリングされた顔の両係数を蒸留することにより、音声から正確な表情を学習するExpNetを提案する。
論文 参考訳(メタデータ) (2022-11-22T11:35:07Z) - 3D-TalkEmo: Learning to Synthesize 3D Emotional Talking Head [13.305263646852087]
3D-TalkEmoは、様々な感情を持つ3Dトークヘッドアニメーションを生成するディープニューラルネットワークです。
私たちはまた、オーディオとビデオの同期、豊富なコーパス、異なる人のさまざまな感情状態を含む大きな3dデータセットも作成します。
論文 参考訳(メタデータ) (2021-04-25T02:48:19Z) - Learning Speech-driven 3D Conversational Gestures from Video [106.15628979352738]
同期3D対話体と手のジェスチャーの両方を自動的に共同合成する最初のアプローチを提案します。
本アルゴリズムは,表情と手のジェスチャーの固有相関を利用したcnnアーキテクチャを用いる。
われわれはまた、33時間以上の注釈付きボディ、手、顔データからなる大きなコーパスを作成する新しい方法にも貢献する。
論文 参考訳(メタデータ) (2021-02-13T01:05:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。