論文の概要: Experimental fault-tolerant code switching
- arxiv url: http://arxiv.org/abs/2403.13732v1
- Date: Wed, 20 Mar 2024 16:40:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 16:08:57.414709
- Title: Experimental fault-tolerant code switching
- Title(参考訳): 耐故障性コードスイッチングの実験
- Authors: Ivan Pogorelov, Friederike Butt, Lukas Postler, Christian D. Marciniak, Philipp Schindler, Markus Müller, Thomas Monz,
- Abstract要約: 本稿では,2つのコード間でのフォールトトレラントコードスイッチングを初めて実験的に実施する。
我々は論理回路を構築し、単一コード内でフォールトトレラントな方法でアクセスできない12の異なる論理状態を作成する。
その結果,論理量子ビットに対する決定論的制御への新たな経路を,補助量子ビットオーバーヘッドの低い論理量子ビットに対して実験的に開放した。
- 参考スコア(独自算出の注目度): 1.9088985324817254
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum error correction is a crucial tool for mitigating hardware errors in quantum computers by encoding logical information into multiple physical qubits. However, no single error-correcting code allows for an intrinsically fault-tolerant implementation of all the gates needed for universal quantum computing [1-3]. One way to tackle this problem is to switch between two suitable error-correcting codes, while preserving the encoded logical information, which in combination give access to a fault-tolerant universal gate set [4-6]. In this work, we present the first experimental implementation of fault-tolerant code switching between two codes. One is the seven-qubit color code [7], which features fault-tolerant CNOT and $H$ quantum gates, while the other one, the 10-qubit code [8], allows for a fault-tolerant $T$-gate implementation. Together they form a complementary universal gate set. Building on essential code switching building blocks, we construct logical circuits and prepare 12 different logical states which are not accessible natively in a fault-tolerant way within a single code. Finally, we use code switching to entangle two logical qubits employing the full universal gate set in a single logical quantum circuit. Our results experimentally open up a new route towards deterministic control over logical qubits with low auxiliary qubit overhead, not relying on the probabilistic preparation of resource states.
- Abstract(参考訳): 量子誤り訂正は、論理情報を複数の物理量子ビットに符号化することで、量子コンピュータにおけるハードウェアエラーを緩和するための重要なツールである。
しかし、単一の誤り訂正コードは、普遍量子コンピューティング [1-3] に必要な全てのゲートを本質的にフォールトトレラントに実装することができない。
この問題を解決する方法の1つは、符号化された論理情報を保存しながら、2つの適切な誤り訂正符号を切り替えることである。
本研究では,2つのコード間でのフォールトトレラントなコードスイッチングを初めて実験的に実施する。
1つは、フォールトトレラントなCNOTと$H$量子ゲートを備えた7キュービットカラーコード[7]であり、もう1つは、フォールトトレラントな$T$ゲートの実装を可能にする10キュービットコード[8]である。
それらは相補的な普遍ゲートセットを形成する。
基本的コードスイッチングブロックに基づいて論理回路を構築し、単一コード内でフォールトトレラントな方法でネイティブにアクセスできない12の論理状態を作成する。
最後に,1つの論理量子回路における全普遍ゲートを用いた2つの論理量子ビットの絡み合わせにコード切替を用いる。
その結果、資源状態の確率的準備に頼らずに、補助量子ビットのオーバーヘッドが低い論理量子ビットに対する決定論的制御への新たな経路を実験的に開けた。
関連論文リスト
- Efficient fault-tolerant code switching via one-way transversal CNOT gates [0.0]
スイッチングゲートのみを用いることで、FT回路設計の制約を尊重するコードスキームを提案する。
我々は、既存の量子プロセッサの動作に適した低距離カラーコードへのスキームの適用を解析する。
論理的補助量子ビットが十分に確実に準備できることを前提として、このスキームを大規模な並列化でどのように実装できるかを論じる。
論文 参考訳(メタデータ) (2024-09-20T12:54:47Z) - Implementing fault-tolerant non-Clifford gates using the [[8,3,2]] color
code [0.0]
非クリフォードゲートを実装した符号化回路の性能改善を観察する。
本結果は,量子ゲートを用いた非自明なアルゴリズムの実装の可能性を示す。
論文 参考訳(メタデータ) (2023-09-15T18:00:02Z) - Fault-Tolerant Code Switching Protocols for Near-Term Quantum Processors [0.0]
トップカラーコードは、フォールトトレラント量子コンピューティングの有望な候補として広く認められている。
トップカラー符号は、T-次元においてT-ゲートが欠落し、H-ゲートが3-次元の場合、普遍ゲートセット$$H, T, C$$を提供することができる。
我々は,2次元および3次元距離3色符号に対するリソース最適化決定性および非決定性符号切替プロトコルを構築した。
論文 参考訳(メタデータ) (2023-06-30T14:16:52Z) - Transversal Injection: A method for direct encoding of ancilla states
for non-Clifford gates using stabiliser codes [55.90903601048249]
非クリフォードゲートのこのオーバーヘッドを低減するためのプロトコルを導入する。
予備的な結果は、より広い距離で高品質な忠実さを示唆している。
論文 参考訳(メタデータ) (2022-11-18T06:03:10Z) - Protecting Expressive Circuits with a Quantum Error Detection Code [0.0]
我々は,既存のトラップイオンコンピュータの実装のための量子エラー検出コードを開発した。
k$論理量子ビットを$k+2$物理量子ビットに符号化することにより、フォールトトレラントな状態初期化とシンドローム測定回路を提示する。
論文 参考訳(メタデータ) (2022-11-12T16:46:35Z) - A Quantum Algorithm for Computing All Diagnoses of a Switching Circuit [73.70667578066775]
ほとんどの人造システム、特にコンピュータは決定論的に機能する。
本稿では、量子物理学が確率法則に従うときの直観的なアプローチである量子情報理論による接続を提供する。
論文 参考訳(メタデータ) (2022-09-08T17:55:30Z) - Logical blocks for fault-tolerant topological quantum computation [55.41644538483948]
本稿では,プラットフォームに依存しない論理ゲート定義の必要性から,普遍的なフォールトトレラント論理の枠組みを提案する。
資源オーバーヘッドを改善するユニバーサル論理の新しいスキームについて検討する。
境界のない計算に好適な論理誤差率を動機として,新しい計算手法を提案する。
論文 参考訳(メタデータ) (2021-12-22T19:00:03Z) - Experimental Characterization of Fault-Tolerant Circuits in Small-Scale
Quantum Processors [67.47400131519277]
符号の論理ゲートセットは、10以上のゲートシーケンスに対してフォールトトレラントとみなすことができる。
一部の回路は耐故障性基準を満たしていなかった。
試験した回路が低次元の出力状態に制限された場合に、耐故障性基準を評価するのが最も正確である。
論文 参考訳(メタデータ) (2021-12-08T01:52:36Z) - Demonstration of fault-tolerant universal quantum gate operations [1.1817296279855427]
論理量子情報を複数の量子ビットに冗長に符号化することで、量子コンピュータはノイズから保護することができる。
不完全な操作によって生じるエラーは、量子レジスタを通して制御不能に拡散しない。
トラップイオン量子コンピュータにおいて、2つの論理量子ビット上の耐障害性の普遍的なゲートの集合を実証する。
論文 参考訳(メタデータ) (2021-11-24T17:34:14Z) - Finding the disjointness of stabilizer codes is NP-complete [77.34726150561087]
我々は、$c-不連続性を計算すること、あるいはそれを定数乗算係数の範囲内で近似することの問題はNP完全であることを示す。
CSSコード、$dコード、ハイパーグラフコードなど、さまざまなコードファミリの相違点に関するバウンダリを提供します。
以上の結果から,一般的な量子誤り訂正符号に対するフォールトトレラント論理ゲートの発見は,計算に難題であることが示唆された。
論文 参考訳(メタデータ) (2021-08-10T15:00:20Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
耐故障性ウェイト4パリティチェック測定方式を実験的に実証した。
フラグ条件パリティ測定の単発忠実度は93.2(2)%である。
このスキームは、安定化器量子誤り訂正プロトコルの幅広いクラスにおいて必須な構成要素である。
論文 参考訳(メタデータ) (2021-07-13T20:08:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。