Higher-Form Anomalies Imply Intrinsic Long-Range Entanglement
- URL: http://arxiv.org/abs/2504.10569v1
- Date: Mon, 14 Apr 2025 18:00:00 GMT
- Title: Higher-Form Anomalies Imply Intrinsic Long-Range Entanglement
- Authors: Po-Shen Hsin, Ryohei Kobayashi, Abhinav Prem,
- Abstract summary: We show that generic gapped quantum many-body states which respect an anomalous finite higher-form symmetry have an exponentially small overlap with any short-range entangled (SRE) state.<n>We also identify a new (3+1)D intrinsic mixed-state topological order that does not obey remote-detectability by local decoherence of the (3+1)D Toric Code with fermionic loop excitations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show that generic gapped quantum many-body states which respect an anomalous finite higher-form symmetry have an exponentially small overlap with any short-range entangled (SRE) state. Hence, anomalies of higher-form symmetries enforce $intrinsic$ long-range entanglement, which is in contrast with anomalies of ordinary (0-form) symmetries which are compatible with symmetric SRE states (specifically, symmetric cat states). As an application, we show that the anomalies of strong higher-form symmetries provide a diagnostic for mixed-state topological order in $d \geq 2$ spatial dimensions. We also identify a new (3+1)D intrinsic mixed-state topological order that does not obey remote-detectability by local decoherence of the (3+1)D Toric Code with fermionic loop excitations. This breakdown of remote detectability, as encoded in anomalies of strong higher-form symmetries, provides a partial characterization of intrinsically mixed-state topological order.
Related papers
- Observation of non-Hermitian bulk-boundary correspondence in non-chiral non-unitary quantum dynamics of single photons [31.05848822220465]
In non-Hermitian systems, preserved chiral symmetry is one of the key ingredients, which plays a pivotal role in determining non-Hermitian topology.<n>We theoretically predict and experimentally demonstrate the bulk-boundary correspondence of a one-dimensional (1D) non-Hermitian system with chiral symmetry breaking.
arXiv Detail & Related papers (2025-04-07T09:43:43Z) - Higher-form anomaly and long-range entanglement of mixed states [3.5602863178766966]
In open quantum systems, we relate anomalies of higher-form symmetries to the long-range entanglement of any mixed state with such symmetries.<n>We prove that states in (2+1)-D with anomalous strong 1-form symmetries exhibit long-range bipartite entanglement.<n>We conjecture a connection between higher-form anomalies and long-range multipartite entanglement for mixed states in higher dimensions.
arXiv Detail & Related papers (2025-03-17T04:01:17Z) - Predicting symmetries of quantum dynamics with optimal samples [41.42817348756889]
Identifying symmetries in quantum dynamics is a crucial challenge with profound implications for quantum technologies.
We introduce a unified framework combining group representation theory and subgroup hypothesis testing to predict these symmetries with optimal efficiency.
We prove that parallel strategies achieve the same performance as adaptive or indefinite-causal-order protocols.
arXiv Detail & Related papers (2025-02-03T15:57:50Z) - Topological nature of edge states for one-dimensional systems without symmetry protection [46.87902365052209]
We numerically verify and analytically prove a winding number invariant that correctly predicts the number of edge states in one-dimensional, nearest-neighbour (between unit cells)<n>Our invariant is invariant under unitary and similarity transforms.
arXiv Detail & Related papers (2024-12-13T19:44:54Z) - Boundary anomaly detection in two-dimensional subsystem symmetry-protected topological phases [20.518529676631122]
We develop a method to detect quantum anomalies in systems with subsystem symmetry.<n>Using numerical simulations, we demonstrate the power of this method by identifying strong and weak $Ztautimes Zsigma$ SSPT phases.<n>We extend the anomaly indicator to mixed-state density matrices and show that quantum anomalies of subsystem symmetry can persist under both uniform and alternating disorders.
arXiv Detail & Related papers (2024-12-10T14:53:54Z) - Entanglement asymmetry in CFT with boundary symmetry breaking [0.0]
We study the asymmetry of a subsystem $A$ originating from the symmetry-breaking extending into a semi-infinite bulk boundary.
By employing the twist field formalism, we derive a universal expression for the asymmetry.
Our exact analytical findings are validated through numerical simulations in the critical Ising and 3-state Potts models.
arXiv Detail & Related papers (2024-11-15T14:56:03Z) - Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.
These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.
We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Strong-to-weak spontaneous symmetry breaking meets average symmetry-protected topological order [17.38734393793605]
We propose a new class of phases, termed the double ASPT phase, which emerges from a nontrivial extension of these two orders.
This new phase is absent from prior studies and cannot exist in conventional closed systems.
arXiv Detail & Related papers (2024-10-17T16:36:53Z) - Noninvertible operators in one, two, and three dimensions via gauging spatially modulated symmetry [15.282090777675679]
We construct concrete lattice models with non-invertible duality defects via gauging spatially modulated symmetries.<n>Our work provides a unified and systematic analytical framework for constructing exotic duality defects by gauging relevant symmetries.
arXiv Detail & Related papers (2024-09-25T08:52:07Z) - Three perspectives on entropy dynamics in a non-Hermitian two-state system [41.94295877935867]
entropy dynamics as an indicator of physical behavior in an open two-state system with balanced gain and loss is presented.
We distinguish the perspective taken in utilizing the conventional framework of Hermitian-adjoint states from an approach that is based on biorthogonal-adjoint states and a third case based on an isospectral mapping.
arXiv Detail & Related papers (2024-04-04T14:45:28Z) - A Noisy Approach to Intrinsically Mixed-State Topological Order [0.0]
We show that the resulting mixed-state can display intrinsically mixed-state topological order (imTO)
We find that gauging out anyons generically results in imTO, with the decohered mixed-state strongly symmetric under certain anomalous 1-form symmetries.
arXiv Detail & Related papers (2024-03-20T18:00:01Z) - Topological Phases with Average Symmetries: the Decohered, the Disordered, and the Intrinsic [11.002608494115886]
Topological phases in mixed quantum states, originating from textitdecoherence in open quantum systems, have recently garnered significant interest.<n>We present a systematic classification and characterization of average symmetry-protected topological phases.<n>We also formulate the theory of average symmetry-enriched topological (ASET) orders in disordered bosonic systems.
arXiv Detail & Related papers (2023-05-25T18:04:22Z) - Experimental Simulation of Symmetry-Protected Higher-Order Exceptional
Points with Single Photons [8.82526178604718]
We experimentally simulate two-dimensional topological NH band structures using single-photon interferometry.
We observe topologically stable third-order EPs obtained by tuning only two real parameters in the presence of symmetry.
Our work reveals the abundant and conceptually richer higher-order EPs protected by symmetries.
arXiv Detail & Related papers (2023-03-21T13:22:43Z) - Bulk-boundary correspondence for intrinsically-gapless SPTs from group
cohomology [3.299672391663527]
Intrinsically gapless symmetry protected topological phases (igSPT) are gapless systems with SPT edge states.
An anomaly in the low-energy (IR) symmetry group emerges from an extended anomaly-free microscopic (UV) symmetry.
In two- and three-dimensional systems, an additional possibility is that the emergent anomaly can be satisfied by an anomalous symmetry-enriched topological order.
arXiv Detail & Related papers (2022-08-18T18:00:04Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.