COBRA-PPM: A Causal Bayesian Reasoning Architecture Using Probabilistic Programming for Robot Manipulation Under Uncertainty
- URL: http://arxiv.org/abs/2403.14488v3
- Date: Tue, 24 Jun 2025 19:26:15 GMT
- Title: COBRA-PPM: A Causal Bayesian Reasoning Architecture Using Probabilistic Programming for Robot Manipulation Under Uncertainty
- Authors: Ricardo Cannizzaro, Michael Groom, Jonathan Routley, Robert Osazuwa Ness, Lars Kunze,
- Abstract summary: We introduce COBRA-PPM, a novel causal Bayesian reasoning architecture that combines causal Bayesian networks and probabilistic programming to perform interventional inference for robot manipulation under uncertainty.<n>We demonstrate its capabilities through high-fidelity experiments on an exemplar block stacking task, where it predicts manipulation outcomes with high accuracy (Pred Acc: 88.6%) and performs greedy next-best action selection with a 94.2% task success rate.
- Score: 4.087774077861305
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Manipulation tasks require robots to reason about cause and effect when interacting with objects. Yet, many data-driven approaches lack causal semantics and thus only consider correlations. We introduce COBRA-PPM, a novel causal Bayesian reasoning architecture that combines causal Bayesian networks and probabilistic programming to perform interventional inference for robot manipulation under uncertainty. We demonstrate its capabilities through high-fidelity Gazebo-based experiments on an exemplar block stacking task, where it predicts manipulation outcomes with high accuracy (Pred Acc: 88.6%) and performs greedy next-best action selection with a 94.2% task success rate. We further demonstrate sim2real transfer on a domestic robot, showing effectiveness in handling real-world uncertainty from sensor noise and stochastic actions. Our generalised and extensible framework supports a wide range of manipulation scenarios and lays a foundation for future work at the intersection of robotics and causality.
Related papers
- Prognostic Framework for Robotic Manipulators Operating Under Dynamic Task Severities [0.6058427379240697]
We present a prognostic modeling framework that predicts a robotic manipulator's Remaining Useful Life (RUL)<n>Our findings show that robots in both fleets experience shorter RUL when handling a higher proportion of high-severity tasks.
arXiv Detail & Related papers (2024-11-30T17:09:18Z) - $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge.
We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people, and its ability to acquire new skills via fine-tuning.
arXiv Detail & Related papers (2024-10-31T17:22:30Z) - ABNet: Attention BarrierNet for Safe and Scalable Robot Learning [58.4951884593569]
Barrier-based method is one of the dominant approaches for safe robot learning.
We propose Attention BarrierNet (ABNet) that is scalable to build larger foundational safe models in an incremental manner.
We demonstrate the strength of ABNet in 2D robot obstacle avoidance, safe robot manipulation, and vision-based end-to-end autonomous driving.
arXiv Detail & Related papers (2024-06-18T19:37:44Z) - RPMArt: Towards Robust Perception and Manipulation for Articulated Objects [56.73978941406907]
We propose a framework towards Robust Perception and Manipulation for Articulated Objects ( RPMArt)
RPMArt learns to estimate the articulation parameters and manipulate the articulation part from the noisy point cloud.
We introduce an articulation-aware classification scheme to enhance its ability for sim-to-real transfer.
arXiv Detail & Related papers (2024-03-24T05:55:39Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - Gaussian Mixture Models for Affordance Learning using Bayesian Networks [50.18477618198277]
Affordances are fundamental descriptors of relationships between actions, objects and effects.
This paper approaches the problem of an embodied agent exploring the world and learning these affordances autonomously from its sensory experiences.
arXiv Detail & Related papers (2024-02-08T22:05:45Z) - A GP-based Robust Motion Planning Framework for Agile Autonomous Robot
Navigation and Recovery in Unknown Environments [6.859965454961918]
We propose a model for proactively detecting the risk of future motion planning failure.
When the risk exceeds a certain threshold, a recovery behavior is triggered.
Our framework is capable of both predicting planner failures and recovering the robot to states where planner success is likely.
arXiv Detail & Related papers (2024-02-02T18:27:21Z) - Learning Vision-based Pursuit-Evasion Robot Policies [54.52536214251999]
We develop a fully-observable robot policy that generates supervision for a partially-observable one.
We deploy our policy on a physical quadruped robot with an RGB-D camera on pursuit-evasion interactions in the wild.
arXiv Detail & Related papers (2023-08-30T17:59:05Z) - Towards a Causal Probabilistic Framework for Prediction,
Action-Selection & Explanations for Robot Block-Stacking Tasks [4.244706520140677]
Causal models provide a principled framework to encode formal knowledge of the causal relationships that govern the robot's interaction with its environment.
We propose a novel causal probabilistic framework to embed a physics simulation capability into a structural causal model to permit robots to perceive and assess the current state of a block-stacking task.
arXiv Detail & Related papers (2023-08-11T15:58:15Z) - Distributional Instance Segmentation: Modeling Uncertainty and High
Confidence Predictions with Latent-MaskRCNN [77.0623472106488]
In this paper, we explore a class of distributional instance segmentation models using latent codes.
For robotic picking applications, we propose a confidence mask method to achieve the high precision necessary.
We show that our method can significantly reduce critical errors in robotic systems, including our newly released dataset of ambiguous scenes.
arXiv Detail & Related papers (2023-05-03T05:57:29Z) - Active Exploration for Robotic Manipulation [40.39182660794481]
This paper proposes a model-based active exploration approach that enables efficient learning in sparse-reward robotic manipulation tasks.
We evaluate our proposed algorithm in simulation and on a real robot, trained from scratch with our method.
arXiv Detail & Related papers (2022-10-23T18:07:51Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
We propose a backpropagation-free approach to robotic control through the neuro-cognitive computational framework of neural generative coding (NGC)
We design an agent built completely from powerful predictive coding/processing circuits that facilitate dynamic, online learning from sparse rewards.
We show that our proposed ActPC agent performs well in the face of sparse (extrinsic) reward signals and is competitive with or outperforms several powerful backprop-based RL approaches.
arXiv Detail & Related papers (2022-09-19T16:49:32Z) - Towards Disturbance-Free Visual Mobile Manipulation [11.738161077441104]
We develop a new disturbance-avoidance methodology at the heart of which is the auxiliary task of disturbance prediction.
Our experiments on ManipulaTHOR show that, on testing scenes with novel objects, our method improves the success rate from 61.7% to 85.6%.
arXiv Detail & Related papers (2021-12-17T22:33:23Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
We introduce a novel Real-to-Sim reward analysis technique to reliably imagine and predict the outcome of taking possible actions for a real robotic platform.
We produce a closed-loop controller to reactively push objects in a continuous action space.
We observe that RMPC is robust in cluttered as well as occluded environments and outperforms the baselines.
arXiv Detail & Related papers (2021-11-15T18:50:04Z) - Probabilistic Human Motion Prediction via A Bayesian Neural Network [71.16277790708529]
We propose a probabilistic model for human motion prediction in this paper.
Our model could generate several future motions when given an observed motion sequence.
We extensively validate our approach on a large scale benchmark dataset Human3.6m.
arXiv Detail & Related papers (2021-07-14T09:05:33Z) - DeepSym: Deep Symbol Generation and Rule Learning from Unsupervised
Continuous Robot Interaction for Planning [1.3854111346209868]
A robot arm-hand system learns symbols that can be interpreted as 'rollable', 'insertable', 'larger-than' from its push and stack actions.
Our system is verified in a physics-based 3d simulation environment where a robot arm-hand system learned symbols that can be interpreted as 'rollable', 'insertable', 'larger-than' from its push and stack actions.
arXiv Detail & Related papers (2020-12-04T11:26:06Z) - Counterfactual Explanation and Causal Inference in Service of Robustness
in Robot Control [15.104159722499366]
We propose an architecture for training generative models of counterfactual conditionals of the form, 'can we modify event A to cause B instead of C?'
In contrast to conventional control design approaches, where robustness is quantified in terms of the ability to reject noise, we explore the space of counterfactuals that might cause a certain requirement to be violated.
arXiv Detail & Related papers (2020-09-18T14:22:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.