An AIC-based approach for articulating unpredictable problems in open complex environments
- URL: http://arxiv.org/abs/2403.14697v1
- Date: Fri, 15 Mar 2024 20:30:02 GMT
- Title: An AIC-based approach for articulating unpredictable problems in open complex environments
- Authors: Haider AL-Shareefy, Michael Butler, Thai Son Hoang,
- Abstract summary: By adopting a systems approach, we aim to improve architects' predictive capabilities in designing dependable systems.
An aerospace case study is used to illustrate the approach.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research paper presents an approach to enhancing the predictive capability of architects in the design and assurance of systems, focusing on systems operating in dynamic and unpredictable environments. By adopting a systems approach, we aim to improve architects' predictive capabilities in designing dependable systems (for example, ML-based systems). An aerospace case study is used to illustrate the approach. Multiple factors (challenges) influencing aircraft detection are identified, demonstrating the effectiveness of our approach in a complex operational setting. Our approach primarily aimed to enhance the architect's predictive capability.
Related papers
- Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence.
This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy.
Our work provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time.
arXiv Detail & Related papers (2025-03-27T12:50:17Z) - LLMs Working in Harmony: A Survey on the Technological Aspects of Building Effective LLM-Based Multi Agent Systems [0.0]
This survey investigates foundational technologies essential for developing effective Large Language Model (LLM)-based multi-agent systems.
Aiming to answer how best to optimize these systems for collaborative, dynamic environments, we focus on four critical areas: Architecture, Memory, Planning, and Technologies/ Frameworks.
arXiv Detail & Related papers (2025-03-13T06:17:50Z) - A Survey of Model Architectures in Information Retrieval [64.75808744228067]
We focus on two key aspects: backbone models for feature extraction and end-to-end system architectures for relevance estimation.
We trace the development from traditional term-based methods to modern neural approaches, particularly highlighting the impact of transformer-based models and subsequent large language models (LLMs)
We conclude by discussing emerging challenges and future directions, including architectural optimizations for performance and scalability, handling of multimodal, multilingual data, and adaptation to novel application domains beyond traditional search paradigms.
arXiv Detail & Related papers (2025-02-20T18:42:58Z) - On Sequential Fault-Intolerant Process Planning [60.66853798340345]
We propose and study a planning problem we call Sequential Fault-Intolerant Process Planning (SFIPP)
SFIPP captures a reward structure common in many sequential multi-stage decision problems where the planning is deemed successful only if all stages succeed.
We design provably tight online algorithms for settings in which we need to pick between different actions with unknown success chances at each stage.
arXiv Detail & Related papers (2025-02-07T15:20:35Z) - A quantitative framework for evaluating architectural patterns in ML systems [49.1574468325115]
This study proposes a framework for quantitative assessment of architectural patterns in ML systems.
We focus on scalability and performance metrics for cost-effective CPU-based inference.
arXiv Detail & Related papers (2025-01-20T15:30:09Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
Large-scale Mixture of Experts (MoE) models offer enhanced model capacity and computational efficiency through conditional computation.
deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency.
This survey analyzes optimization techniques for MoE models across the entire system stack.
arXiv Detail & Related papers (2024-12-18T14:11:15Z) - Efficient Adaptation in Mixed-Motive Environments via Hierarchical Opponent Modeling and Planning [51.52387511006586]
We propose Hierarchical Opponent modeling and Planning (HOP), a novel multi-agent decision-making algorithm.
HOP is hierarchically composed of two modules: an opponent modeling module that infers others' goals and learns corresponding goal-conditioned policies.
HOP exhibits superior few-shot adaptation capabilities when interacting with various unseen agents, and excels in self-play scenarios.
arXiv Detail & Related papers (2024-06-12T08:48:06Z) - A Methodology to Identify Physical or Computational Experiment Conditions for Uncertainty Mitigation [0.0]
This paper introduces a methodology for designing computational or physical experiments for system-level uncertainty mitigation purposes.
The proposed methodology is versatile enough to tackle uncertainty management across various design challenges.
arXiv Detail & Related papers (2024-05-22T18:59:42Z) - LLM as a Mastermind: A Survey of Strategic Reasoning with Large Language Models [75.89014602596673]
Strategic reasoning requires understanding and predicting adversary actions in multi-agent settings while adjusting strategies accordingly.
We explore the scopes, applications, methodologies, and evaluation metrics related to strategic reasoning with Large Language Models.
It underscores the importance of strategic reasoning as a critical cognitive capability and offers insights into future research directions and potential improvements.
arXiv Detail & Related papers (2024-04-01T16:50:54Z) - Dynamic Decision Making in Engineering System Design: A Deep Q-Learning
Approach [1.3812010983144802]
We present a framework proposing the use of the Deep Q-learning algorithm to optimize the design of engineering systems.
The goal is to find policies that maximize the output of a simulation model given multiple sources of uncertainties.
We demonstrate the effectiveness of our proposed framework by solving two engineering system design problems in the presence of multiple uncertainties.
arXiv Detail & Related papers (2023-12-28T06:11:34Z) - Predictable Artificial Intelligence [77.1127726638209]
This paper introduces the ideas and challenges of Predictable AI.
It explores the ways in which we can anticipate key validity indicators of present and future AI ecosystems.
We argue that achieving predictability is crucial for fostering trust, liability, control, alignment and safety of AI ecosystems.
arXiv Detail & Related papers (2023-10-09T21:36:21Z) - A Bayesian Approach to Robust Inverse Reinforcement Learning [54.24816623644148]
We consider a Bayesian approach to offline model-based inverse reinforcement learning (IRL)
The proposed framework differs from existing offline model-based IRL approaches by performing simultaneous estimation of the expert's reward function and subjective model of environment dynamics.
Our analysis reveals a novel insight that the estimated policy exhibits robust performance when the expert is believed to have a highly accurate model of the environment.
arXiv Detail & Related papers (2023-09-15T17:37:09Z) - Architecting Safer Autonomous Aviation Systems [1.2599533416395767]
This paper considers common architectural patterns used within traditional aviation systems and explores their safety and safety assurance implications.
Considering safety as an architectural property, we discuss both the allocation of safety requirements and the architectural trade-offs involved early in the design lifecycle.
arXiv Detail & Related papers (2023-01-09T21:02:18Z) - Design Space Exploration and Explanation via Conditional Variational
Autoencoders in Meta-model-based Conceptual Design of Pedestrian Bridges [52.77024349608834]
This paper provides a performance-driven design exploration framework to augment the human designer through a Conditional Variational Autoencoder (CVAE)
The CVAE is trained on 18'000 synthetically generated instances of a pedestrian bridge in Switzerland.
arXiv Detail & Related papers (2022-11-29T17:28:31Z) - Graph Learning based Generative Design for Resilience of Interdependent
Network Systems [3.6930948691311007]
This study presents a generative design method that utilizes graph learning algorithms.
The generator can intelligently mine good properties from existing systems and output new designs that meet predefined performance criteria.
Case studies results based on power systems from the IEEE dataset have illustrated the applicability of the proposed method.
arXiv Detail & Related papers (2022-07-03T01:35:08Z) - HINNPerf: Hierarchical Interaction Neural Network for Performance
Prediction of Configurable Systems [22.380061796355616]
HINNPerf is a novel hierarchical interaction neural network for performance prediction.
HINNPerf employs the embedding method and hierarchic network blocks to model the complicated interplay between configuration options.
Empirical results on 10 real-world systems show that our method statistically significantly outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2022-04-08T08:52:23Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
Recent advancements in predictive machine learning has led to its application in various use cases in manufacturing.
Most research focused on maximising predictive accuracy without addressing the uncertainty associated with it.
In this paper, we determine the sources of uncertainty in machine learning and establish the success criteria of a machine learning system to function well under uncertainty.
arXiv Detail & Related papers (2021-07-28T10:28:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.