論文の概要: Auditing Fairness under Unobserved Confounding
- arxiv url: http://arxiv.org/abs/2403.14713v1
- Date: Mon, 18 Mar 2024 21:09:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 21:31:40.883566
- Title: Auditing Fairness under Unobserved Confounding
- Title(参考訳): 観測不能な条件下での公正さの監査
- Authors: Yewon Byun, Dylan Sam, Michael Oberst, Zachary C. Lipton, Bryan Wilder,
- Abstract要約: リスクの高い個人間の割当率に情報的制約を与えることができることを示す。
新型コロナウイルス患者に対するPaxlovid割当の実環境調査において,本フレームワークの有効性を実証した。
- 参考スコア(独自算出の注目度): 56.61738581796362
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A fundamental problem in decision-making systems is the presence of inequity across demographic lines. However, inequity can be difficult to quantify, particularly if our notion of equity relies on hard-to-measure notions like risk (e.g., equal access to treatment for those who would die without it). Auditing such inequity requires accurate measurements of individual risk, which is difficult to estimate in the realistic setting of unobserved confounding. In the case that these unobservables "explain" an apparent disparity, we may understate or overstate inequity. In this paper, we show that one can still give informative bounds on allocation rates among high-risk individuals, even while relaxing or (surprisingly) even when eliminating the assumption that all relevant risk factors are observed. We utilize the fact that in many real-world settings (e.g., the introduction of a novel treatment) we have data from a period prior to any allocation, to derive unbiased estimates of risk. We demonstrate the effectiveness of our framework on a real-world study of Paxlovid allocation to COVID-19 patients, finding that observed racial inequity cannot be explained by unobserved confounders of the same strength as important observed covariates.
- Abstract(参考訳): 意思決定システムにおける根本的な問題は、人口統計上の不平等の存在である。
しかしながら、不平等は定量化が困難であり、特に我々の株式の概念がリスク(例えば、それ無しで死ぬ人に対する治療への平等なアクセス)のような難しい概念に依存している場合である。
このような不平等を監査するには、個々のリスクを正確に測定する必要がある。
これらの観測不能物が明らかな相違を「説明」する場合、過渡状態または過渡状態の不等式が成立する可能性がある。
本稿では, リスク要因がすべて観察されているという仮定を排除した場合でも, 緩やかに, あるいは(当然のことながら) 高いリスクの個人間でのアロケーション率に情報的限界を与えることができることを示す。
我々は、現実の多くの設定(例えば、新しい治療の導入)において、いかなるアロケーションよりも前の期間のデータを持ち、不偏のリスク見積を導出するという事実を利用する。
筆者らは,Paxlovidの患者への配当に関する現実的な研究において,我々の枠組みの有効性を実証し,観察された人種的不平等は,重要な観察された同種種と同一の強度を持つ未観察の共同設立者によって説明できないことを発見した。
関連論文リスト
- FairlyUncertain: A Comprehensive Benchmark of Uncertainty in Algorithmic Fairness [4.14360329494344]
フェアネスにおける不確実性評価のための公理的ベンチマークであるFairlyUncertainを紹介する。
我々のベンチマークは、予測の不確実性推定は学習パイプライン間で一貫性があり、観測されたランダム性に調整されるべきである、と示唆している。
論文 参考訳(メタデータ) (2024-10-02T20:15:29Z) - Criticality and Safety Margins for Reinforcement Learning [53.10194953873209]
我々は,定量化基盤真理とユーザにとっての明確な意義の両面から,批判的枠組みを定めようとしている。
エージェントがn連続的ランダム動作に対するポリシーから逸脱した場合の報酬の減少として真臨界を導入する。
我々はまた、真の臨界と統計的に単調な関係を持つ低オーバーヘッド計量であるプロキシ臨界の概念も導入する。
論文 参考訳(メタデータ) (2024-09-26T21:00:45Z) - The Unfairness of $\varepsilon$-Fairness [0.0]
我々は、$varepsilon$-fairnessという概念が採用されれば、現実世界の文脈で最大に不公平な結果をもたらす可能性があることを示した。
本研究は,大学入学と信用リスク評価の2つの実例を用いて実施した。
論文 参考訳(メタデータ) (2024-05-15T14:13:35Z) - Data-Adaptive Tradeoffs among Multiple Risks in Distribution-Free Prediction [55.77015419028725]
しきい値とトレードオフパラメータが適応的に選択された場合、リスクの有効な制御を可能にする手法を開発する。
提案手法は単調なリスクとほぼ単調なリスクをサポートするが,それ以外は分布的な仮定はしない。
論文 参考訳(メタデータ) (2024-03-28T17:28:06Z) - What's the Harm? Sharp Bounds on the Fraction Negatively Affected by
Treatment [58.442274475425144]
我々は,これらの関数がどの程度の速さで学習されたかに関わらず,効率の良い頑健な推論アルゴリズムを開発した。
シミュレーション研究および失業者のキャリアカウンセリングのケーススタディにおいて,本手法を実証する。
論文 参考訳(メタデータ) (2022-05-20T17:36:33Z) - Treatment Effect Risk: Bounds and Inference [58.442274475425144]
平均的な治療効果は社会福祉の変化を測定するため、たとえ肯定的であっても、人口の約10%に悪影響を及ぼすリスクがある。
本稿では,ICT分布のリスク条件値(CVaR)として定式化されたこの重要なリスク尺度をどう評価するかを検討する。
いくつかの境界は、複素CATE関数を単一の計量に要約したものと解釈することもでき、有界であることとは無関係に興味を持つ。
論文 参考訳(メタデータ) (2022-01-15T17:21:26Z) - Enabling risk-aware Reinforcement Learning for medical interventions
through uncertainty decomposition [9.208828373290487]
複雑な制御と意思決定の問題に対処するためのツールとして強化学習(RL)が登場している。
エージェントが学習した明らかに最適なポリシーと、実際の展開の間のギャップを埋めることは、しばしば困難である。
本稿では,各不確実性のネット効果を分解して不確かさを再現するために,分布的アプローチ (UA-DQN) を再キャストする方法を提案する。
論文 参考訳(メタデータ) (2021-09-16T09:36:53Z) - Feedback Effects in Repeat-Use Criminal Risk Assessments [0.0]
リスクは、単発テストで捉えられていない方法で、シーケンシャルな決定を伝達できることを示します。
リスクアセスメントツールは、非常に複雑でパスに依存したプロセスで動作し、歴史的な不平等が引き起こされる。
論文 参考訳(メタデータ) (2020-11-28T06:40:05Z) - Temporal Difference Uncertainties as a Signal for Exploration [76.6341354269013]
強化学習における探索の効果的なアプローチは、最適な政策に対するエージェントの不確実性に依存することである。
本稿では,評価値のバイアスや時間的に矛盾する点を強調した。
本稿では,時間差誤差の分布の導出に依存する値関数の不確かさを推定する手法を提案する。
論文 参考訳(メタデータ) (2020-10-05T18:11:22Z) - Off-policy Policy Evaluation For Sequential Decisions Under Unobserved
Confounding [33.58862183373374]
観測不能条件下でのOPE手法のロバスト性を評価する。
また,OPE法に偏りが強い場合も少ないことが示唆された。
最悪ケース境界の計算に有効な損失最小化手法を提案する。
論文 参考訳(メタデータ) (2020-03-12T05:20:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。