論文の概要: Optimisation of photodetectors design: comparison between Montecarlo and Genetic Algorithms
- arxiv url: http://arxiv.org/abs/2403.14913v1
- Date: Fri, 22 Mar 2024 02:22:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 18:47:18.220366
- Title: Optimisation of photodetectors design: comparison between Montecarlo and Genetic Algorithms
- Title(参考訳): 光検出器設計の最適化:モンテカルロと遺伝的アルゴリズムの比較
- Authors: Patricia M. E. Vázquez, Ligia Ciocci Brazzano, Francisco E. Veiras, Patricio A. Sorichetti,
- Abstract要約: 本稿では,モンテカルロと遺伝的アルゴリズムを光検出器の設計に適用する。
回路性能はメリット関数で評価され、系統探索法が参照として使用される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present Montecarlo and Genetic Algorithm optimisations applied to the design of photodetectors based on a transimpedance amplifier and a photodiode. The circuit performance is evaluated with a merit function and the systematic search method is used as a reference. The design parameters are the feedback network components and the photodiode bias voltage. To evaluate the optimisations, we define the relative difference between its merit and the optimum merit obtained by the systematic search. In both algorithms, the relative difference decreases with the number of evaluations, following a power law. The power-law exponent for the Genetic Algorithm is larger than that of Montecarlo (0.74 vs. 0.50). We conclude that both algorithms are advantageous compared to the systematic search method, and that the Genetic Algorithm shows a better performance than Montecarlo.
- Abstract(参考訳): 本稿では,超インピーダンス増幅器とフォトダイオードに基づく光検出器の設計に適用したモンテカルロ・遺伝的アルゴリズムについて述べる。
回路性能はメリット関数で評価され、系統探索法が参照として使用される。
設計パラメータはフィードバックネットワーク成分とフォトダイオードバイアス電圧である。
最適化を評価するために,システム検索により得られるメリットと最適なメリットとの相対的な差を定義した。
どちらのアルゴリズムでも、電力法則に従って相対差は評価の数によって減少する。
遺伝的アルゴリズムのパワーロー指数はモンテカルロ (0.74 vs. 0.50) よりも大きい。
両アルゴリズムは系統探索法と比較して有利であり, 遺伝的アルゴリズムはモンテカルロよりも優れた性能を示す。
関連論文リスト
- A novel algorithm for optimizing bundle adjustment in image sequence alignment [6.322876598831792]
本稿では,低温電子トモグラフィーにおける画像シーケンスアライメントの文脈におけるバンドル調整(BA)モデルを最適化するための新しいアルゴリズムを提案する。
アルゴリズムの性能を評価するために、合成データセットと実世界のデータセットの両方に関する大規模な実験を行った。
論文 参考訳(メタデータ) (2024-11-10T03:19:33Z) - Performance Evaluation of Evolutionary Algorithms for Analog Integrated
Circuit Design Optimisation [0.0]
本稿では,アナログ回路の自動サイズ化手法について述べる。
探索空間を対象とする探索は粒子生成関数と補修バウンド関数を用いて実装されている。
アルゴリズムは、より良い最適解に収束するように調整され、修正される。
論文 参考訳(メタデータ) (2023-10-19T03:26:36Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Sub-Image Histogram Equalization using Coot Optimization Algorithm for
Segmentation and Parameter Selection [0.0]
平均および分散に基づくサブイメージヒストグラム等化(MVSIHE)アルゴリズムは,これらのコントラスト強化手法の1つである。
本研究では,直近の最適化アルゴリズム,すなわちcoot Optimization algorithm(COA)を用いて,MVSIHEアルゴリズムの適切なパラメータを選択する。
その結果, バイオメディカル画像処理の分野では, 提案手法が有効であることが示唆された。
論文 参考訳(メタデータ) (2022-05-31T06:51:45Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
バイレベル最適化は多くの重要な機械学習アプリケーションに広く適用されている。
両レベル最適化のための2つの新しいアルゴリズムを提案する。
両アルゴリズムが$mathcalO(epsilon-1.5)$の複雑さを達成し,既存のアルゴリズムを桁違いに上回っていることを示す。
論文 参考訳(メタデータ) (2021-06-08T21:05:30Z) - Dynamic Cat Swarm Optimization Algorithm for Backboard Wiring Problem [0.9990687944474739]
本稿では,動的キャット群最適化(Dynamic Cat Swarm Optimization)と呼ばれる,強力な群知能メタヒューリスティック最適化アルゴリズムを提案する。
提案アルゴリズムは,アルゴリズムの選択スキームと探索モードを変更することにより,これらの位相間の適切なバランスを与える新しい手法を提案する。
最適化の結果,提案アルゴリズムの有効性が示された。
論文 参考訳(メタデータ) (2021-04-27T19:41:27Z) - Evolutionary Variational Optimization of Generative Models [0.0]
分散最適化と進化的アルゴリズムの2つの一般的な最適化アプローチをジェネレーションモデルのための学習アルゴリズムの導出に組み合わせます。
進化的アルゴリズムは変動境界を効果的かつ効率的に最適化できることを示す。
ゼロショット」学習のカテゴリでは、多くのベンチマーク設定で最先端の技術を大幅に改善するために進化的変動アルゴリズムを観察しました。
論文 参考訳(メタデータ) (2020-12-22T19:06:33Z) - Learned Block Iterative Shrinkage Thresholding Algorithm for
Photothermal Super Resolution Imaging [52.42007686600479]
深層ニューラルネットワークに展開する反復アルゴリズムを用いて,学習したブロックスパース最適化手法を提案する。
本稿では、正規化パラメータの選択を学ぶことができる学習ブロック反復収縮しきい値アルゴリズムを使用することの利点を示す。
論文 参考訳(メタデータ) (2020-12-07T09:27:16Z) - Plug-And-Play Learned Gaussian-mixture Approximate Message Passing [71.74028918819046]
そこで本研究では,従来のi.i.d.ソースに適した圧縮圧縮センシング(CS)リカバリアルゴリズムを提案する。
我々のアルゴリズムは、Borgerdingの学習AMP(LAMP)に基づいて構築されるが、アルゴリズムに普遍的な復調関数を採用することにより、それを大幅に改善する。
数値評価により,L-GM-AMPアルゴリズムは事前の知識を必要とせず,最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-11-18T16:40:45Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
バイレベル最適化は多くの機械学習問題に対するツールである。
Stoc-BiO という新しい確率効率勾配推定器を提案する。
論文 参考訳(メタデータ) (2020-10-15T18:09:48Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
本アルゴリズムは,実験者のガウス過程から引き出された一組の引き数で区切られた関数空間の有限次元ランダム部分空間列を生成する。
標準ベイズ最適化は各部分空間に適用され、次の部分空間の出発点(オリジン)として用いられる最良の解である。
シミュレーションおよび実世界の実験,すなわちブラインド関数マッチング,アルミニウム合金の最適析出強化関数の探索,深層ネットワークの学習速度スケジュール最適化において,本アルゴリズムを検証した。
論文 参考訳(メタデータ) (2020-09-08T06:54:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。