論文の概要: Comprehensive Evaluation and Insights into the Use of Large Language Models in the Automation of Behavior-Driven Development Acceptance Test Formulation
- arxiv url: http://arxiv.org/abs/2403.14965v1
- Date: Fri, 22 Mar 2024 05:37:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 18:37:30.387441
- Title: Comprehensive Evaluation and Insights into the Use of Large Language Models in the Automation of Behavior-Driven Development Acceptance Test Formulation
- Title(参考訳): 行動駆動型開発受け入れテストの自動化における大規模言語モデルの利用に関する総合的評価と考察
- Authors: Shanthi Karpurapu, Sravanthy Myneni, Unnati Nettur, Likhit Sagar Gajja, Dave Burke, Tom Stiehm, Jeffery Payne,
- Abstract要約: 受け入れテスト生成を自動化するために,大規模言語モデル(LLM)を用いてBDDの実践を強化する新しい手法を提案する。
本研究は, GPT-3.5, GPT-4, Llama-2-13B, PaLM-2 などの LLM の評価に 0 および few-shot プロンプトを用いた。
その結果, GPT-3.5 と GPT-4 は誤りのないBDD 受け入れテストを生成し,性能が向上した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Behavior-driven development (BDD) is an Agile testing methodology fostering collaboration among developers, QA analysts, and stakeholders. In this manuscript, we propose a novel approach to enhance BDD practices using large language models (LLMs) to automate acceptance test generation. Our study uses zero and few-shot prompts to evaluate LLMs such as GPT-3.5, GPT-4, Llama-2-13B, and PaLM-2. The paper presents a detailed methodology that includes the dataset, prompt techniques, LLMs, and the evaluation process. The results demonstrate that GPT-3.5 and GPT-4 generate error-free BDD acceptance tests with better performance. The few-shot prompt technique highlights its ability to provide higher accuracy by incorporating examples for in-context learning. Furthermore, the study examines syntax errors, validation accuracy, and comparative analysis of LLMs, revealing their effectiveness in enhancing BDD practices. However, our study acknowledges that there are limitations to the proposed approach. We emphasize that this approach can support collaborative BDD processes and create opportunities for future research into automated BDD acceptance test generation using LLMs.
- Abstract(参考訳): 振る舞い駆動開発(BDD)は、開発者、QAアナリスト、ステークホルダ間のコラボレーションを促進するアジャイルテスト方法論である。
本稿では,大規模言語モデル(LLM)を用いてBDDの実践を向上し,受け入れテスト生成を自動化する手法を提案する。
本研究は, GPT-3.5, GPT-4, Llama-2-13B, PaLM-2 などの LLM の評価に 0 および few-shot プロンプトを用いた。
本稿では,データセット,プロンプト技術,LCM,評価プロセスなどを含む詳細な方法論を提案する。
その結果, GPT-3.5 と GPT-4 は誤りのないBDD 受け入れテストを生成し,性能が向上した。
数発のプロンプト技術は、コンテキスト内学習の例を取り入れて、より高い精度を提供する能力を強調している。
さらに,文法の誤り,検証の正確さ,LLMの比較分析について検討し,BDDの実践を強化する上での有効性を明らかにした。
しかし,本研究は,提案手法には限界があることを認めている。
このアプローチは、共同BDDプロセスをサポートし、LLMを使用したBDD受け入れテストの自動生成を将来研究する機会を生み出すことができる、と強調する。
関連論文リスト
- Automatic Evaluation for Text-to-image Generation: Task-decomposed Framework, Distilled Training, and Meta-evaluation Benchmark [62.58869921806019]
GPT-4oに基づくタスク分解評価フレームワークを提案し、新しいトレーニングデータセットを自動構築する。
我々は、GPT-4oの評価能力を7BオープンソースMLLM、MiniCPM-V-2.6に効果的に蒸留するための革新的なトレーニング戦略を設計する。
実験結果から,我々の蒸留したオープンソースMLLMは,現在のGPT-4oベースラインよりも有意に優れていた。
論文 参考訳(メタデータ) (2024-11-23T08:06:06Z) - Exploring and Lifting the Robustness of LLM-powered Automated Program Repair with Metamorphic Testing [31.165102332393964]
大規模言語モデルを用いた自動プログラム修復(LAPR)技術は、最先端のバグ修正性能を達成した。
実際に展開する前に、LAPR技術で堅牢性テストを実施することが不可欠である。
LAPR技術専用のメタモルフィックテスティングフレームワークであるMT-LAPRを提案する。
論文 参考訳(メタデータ) (2024-10-10T01:14:58Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
大規模言語モデル(LLM)は一貫性と正確な推論に苦しむ。
LLMは、主に正しいソリューションに基づいて訓練され、エラーを検出して学習する能力を減らす。
本稿では,CoT(Chain-of-Thought)とPoT(Program-of-Thought)を組み合わせた新しい協調手法を提案する。
論文 参考訳(メタデータ) (2024-10-05T05:21:48Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
本稿では,コードに基づく批判モデルを用いて,質問コードデータ構築,品質管理,補完的評価などのステップをガイドする新しいパラダイムを提案する。
英語と中国語におけるドメイン内ベンチマークとドメイン外ベンチマークの両方の実験は、提案したパラダイムの有効性を実証している。
論文 参考訳(メタデータ) (2024-08-28T06:33:03Z) - Instruction Tuning with Retrieval-based Examples Ranking for Aspect-based Sentiment Analysis [7.458853474864602]
アスペクトベースの感情分析(ABSA)は、特定の側面に関連する感情情報を識別し、企業や組織に対してより深い市場洞察を提供する。
近年の研究では、ABSAを生成タスクとして再構成する命令チューニングの固定例が提案されている。
本研究では,ABSAタスクの検索に基づくサンプルランキングを用いた指導学習手法を提案する。
論文 参考訳(メタデータ) (2024-05-28T10:39:10Z) - Automating REST API Postman Test Cases Using LLM [0.0]
本稿では,大規模言語モデルを用いたテストケースの自動生成手法の探索と実装について述べる。
この方法論は、テストケース生成の効率性と有効性を高めるために、Open AIの使用を統合する。
この研究で開発されたモデルは、手作業で収集したポストマンテストケースやさまざまなRest APIのインスタンスを使ってトレーニングされている。
論文 参考訳(メタデータ) (2024-04-16T15:53:41Z) - LLM-Based Test-Driven Interactive Code Generation: User Study and Empirical Evaluation [13.800675921118348]
本稿では,ガイド付き意図明確化のための対話型ワークフローTiCoderを提案する。
コード生成精度を向上させるためのワークフローの有効性を実証的に評価する。
我々は,5つのユーザインタラクション内において,データセットと全LLMのパス@1コード生成精度が平均45.97%向上したことを観察した。
論文 参考訳(メタデータ) (2024-04-15T19:16:32Z) - Enhancing LLM-based Test Generation for Hard-to-Cover Branches via Program Analysis [8.31978033489419]
難解な分岐に到達可能なテストを生成する新しい技術である TELPA を提案する。
27のオープンソースPythonプロジェクトに対する実験結果から,TELPAは最先端のSBSTやLLMベースの技術よりも優れていたことが判明した。
論文 参考訳(メタデータ) (2024-04-07T14:08:28Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICLは、正しいサンプル構築と間違ったサンプル構築の両方を活用して、コンテキスト内学習のデモを作成する、新しい数ショット技術である。
各種データセットに対する実験により,c-ICLは従来の数発のインコンテキスト学習法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-02-17T11:28:08Z) - Evaluating and Improving Tool-Augmented Computation-Intensive Math
Reasoning [75.74103236299477]
CoT(Chain-of- Thought prompting)とツール拡張は、大きな言語モデルを改善するための効果的なプラクティスとして検証されている。
ツールインターフェース,すなわち textbfDELI を用いた推論ステップを考慮に入れた新しい手法を提案する。
CARPと他の6つのデータセットの実験結果から、提案されたDELIは、主に競合ベースラインを上回っていることが示された。
論文 参考訳(メタデータ) (2023-06-04T17:02:59Z) - CINS: Comprehensive Instruction for Few-shot Learning in Task-oriented
Dialog Systems [56.302581679816775]
本稿では,タスク固有の命令でPLMを利用する包括的インストラクション(CINS)を提案する。
命令のスキーマ(定義、制約、プロンプト)と、ToDの3つの重要な下流タスクに対するカスタマイズされた実現を設計する。
これらのToDタスクに対して,小さな検証データを用いた現実的な数ショット学習シナリオで実験を行った。
論文 参考訳(メタデータ) (2021-09-10T03:23:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。