論文の概要: Enabling Uncertainty Estimation in Iterative Neural Networks
- arxiv url: http://arxiv.org/abs/2403.16732v2
- Date: Thu, 30 May 2024 10:10:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 20:35:08.123710
- Title: Enabling Uncertainty Estimation in Iterative Neural Networks
- Title(参考訳): 反復型ニューラルネットワークにおける不確かさ推定
- Authors: Nikita Durasov, Doruk Oner, Jonathan Donier, Hieu Le, Pascal Fua,
- Abstract要約: 本研究では,アンサンブルのような手法よりもはるかに低い計算コストで最先端の見積もりを提供する不確実性推定手法を開発する。
航空画像における道路検出と2次元および3次元形状の空力特性の推定という2つの応用領域に組み込むことで,その実用的価値を実証する。
- 参考スコア(独自算出の注目度): 49.56171792062104
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Turning pass-through network architectures into iterative ones, which use their own output as input, is a well-known approach for boosting performance. In this paper, we argue that such architectures offer an additional benefit: The convergence rate of their successive outputs is highly correlated with the accuracy of the value to which they converge. Thus, we can use the convergence rate as a useful proxy for uncertainty. This results in an approach to uncertainty estimation that provides state-of-the-art estimates at a much lower computational cost than techniques like Ensembles, and without requiring any modifications to the original iterative model. We demonstrate its practical value by embedding it in two application domains: road detection in aerial images and the estimation of aerodynamic properties of 2D and 3D shapes.
- Abstract(参考訳): パススルーネットワークアーキテクチャを、自身の出力を入力として使用する反復的なアーキテクチャに変換することは、パフォーマンスを高めるためのよく知られたアプローチである。
本稿では,これらのアーキテクチャが付加的な利点をもたらすことを論じる: 連続する出力の収束率は,収束する値の精度と高い相関関係を持つ。
したがって、収束率を不確実性のための有用なプロキシとして利用することができる。
これは、アンサンブルのような手法よりもはるかに低い計算コストで最先端の見積もりを提供する不確実性推定へのアプローチであり、元の反復モデルを変更する必要はない。
航空画像における道路検出と2次元および3次元形状の空力特性の推定という2つの応用領域に組み込むことで,その実用的価値を実証する。
関連論文リスト
- Trustworthy Evaluation of Generative AI Models [6.653749938600871]
本研究では, 相対的性能差の非バイアス推定器を用いて, 2つの生成モデルを比較する手法を提案する。
提案手法は効率が高く,並列計算と事前保存中間結果により高速化できる。
統計的信頼度のある実画像データセット上での拡散モデルの評価において,本手法の有効性を示す。
論文 参考訳(メタデータ) (2025-01-31T05:31:05Z) - Efficient Computation of Sparse and Robust Maximum Association Estimators [0.4588028371034406]
ロバスト統計推定器は経験的精度を提供するが、しばしば高次元スパース設定において計算的に困難である。
現代のアソシエーション推定手法は、他のロバストな手法に対してレジリエンスを課すことなく、外れ値に利用される。
論文 参考訳(メタデータ) (2023-11-29T11:57:50Z) - Fast Shapley Value Estimation: A Unified Approach [71.92014859992263]
冗長な手法を排除し、単純で効率的なシェープリー推定器SimSHAPを提案する。
既存手法の解析において、推定器は特徴部分集合からランダムに要約された値の線形変換として統一可能であることを観察する。
実験により,SimSHAPの有効性が検証され,精度の高いShapley値の計算が大幅に高速化された。
論文 参考訳(メタデータ) (2023-11-02T06:09:24Z) - Implicit Variational Inference for High-Dimensional Posteriors [7.924706533725115]
変分推論において、ベイズモデルの利点は、真の後続分布を正確に捉えることに依存する。
複雑な多重モーダルおよび相関後部を近似するのに適した暗黙分布を特定するニューラルサンプリング手法を提案する。
提案手法では,ニューラルネットワークを局所的に線形化することにより,暗黙分布を用いた近似推論の新たなバウンダリを導入する。
論文 参考訳(メタデータ) (2023-10-10T14:06:56Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
実データと人工雑音のロジスティックな損失として目的を定式化することにより, ノイズコントラスト推定(NCE)を提案する。
本稿では,非正規化モデルの負の対数類似度を最適化するための直接的アプローチについて検討する。
論文 参考訳(メタデータ) (2023-06-13T01:18:16Z) - Deep Equilibrium Optical Flow Estimation [80.80992684796566]
最近のSOTA(State-of-the-art)光フローモデルでは、従来のアルゴリズムをエミュレートするために有限ステップの更新操作を使用する。
これらのRNNは大きな計算とメモリオーバーヘッドを課し、そのような安定した推定をモデル化するために直接訓練されていない。
暗黙的層の無限レベル固定点として直接流れを解く手法として,Deep equilibrium Flow estimatorを提案する。
論文 参考訳(メタデータ) (2022-04-18T17:53:44Z) - Dynamic Iterative Refinement for Efficient 3D Hand Pose Estimation [87.54604263202941]
本稿では,従来の推定値の修正に部分的レイヤを反復的に活用する,小さなディープニューラルネットワークを提案する。
学習したゲーティング基準を用いて、ウェイトシェアリングループから抜け出すかどうかを判断し、モデルにサンプルごとの適応を可能にする。
提案手法は,広く使用されているベンチマークの精度と効率の両面から,最先端の2D/3Dハンドポーズ推定手法より一貫して優れている。
論文 参考訳(メタデータ) (2021-11-11T23:31:34Z) - Reachable Sets of Classifiers and Regression Models: (Non-)Robustness
Analysis and Robust Training [1.0878040851638]
分類器と回帰モデルの両方の頑健性特性を解析・拡張する。
具体的には、(非)難易度を検証し、堅牢なトレーニング手順を提案し、我々のアプローチが敵攻撃よりも優れていることを示す。
第2に、ラベル付けされていない入力に対する信頼できない予測と信頼できない予測を区別し、各特徴が予測に与える影響を定量化し、特徴ランキングを計算する技術を提供する。
論文 参考訳(メタデータ) (2020-07-28T10:58:06Z) - Pairwise Supervised Hashing with Bernoulli Variational Auto-Encoder and
Self-Control Gradient Estimator [62.26981903551382]
バイナリ潜在変数を持つ変分自動エンコーダ(VAE)は、文書検索の精度の観点から最先端のパフォーマンスを提供する。
本稿では、クラス内類似度とクラス間類似度に報いるために、個別潜伏型VAEを用いたペアワイズ損失関数を提案する。
この新しいセマンティックハッシュフレームワークは、最先端技術よりも優れたパフォーマンスを実現する。
論文 参考訳(メタデータ) (2020-05-21T06:11:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。