論文の概要: Dyna-LfLH: Learning Agile Navigation in Dynamic Environments from Learned Hallucination
- arxiv url: http://arxiv.org/abs/2403.17231v2
- Date: Mon, 01 Sep 2025 18:02:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-03 20:08:26.112431
- Title: Dyna-LfLH: Learning Agile Navigation in Dynamic Environments from Learned Hallucination
- Title(参考訳): Dyna-LfLH: 学習した幻覚から動的環境におけるアジャイルナビゲーションを学ぶ
- Authors: Saad Abdul Ghani, Zizhao Wang, Peter Stone, Xuesu Xiao,
- Abstract要約: Dyna-LfLHは、高密度でダイナミックな障害物のある環境をナビゲートするために、運動プランナーを訓練するための自己教師型手法である。
シミュレーションと実環境の両方において地上ロボット上でDyna-LfLHを評価し,ベースラインと比較して25%の精度向上を実現した。
- 参考スコア(独自算出の注目度): 25.444462899815548
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces Dynamic Learning from Learned Hallucination (Dyna-LfLH), a self-supervised method for training motion planners to navigate environments with dense and dynamic obstacles. Classical planners struggle with dense, unpredictable obstacles due to limited computation, while learning-based planners face challenges in acquiring high- quality demonstrations for imitation learning or dealing with exploration inefficiencies in reinforcement learning. Building on Learning from Hallucination (LfH), which synthesizes training data from past successful navigation experiences in simpler environments, Dyna-LfLH incorporates dynamic obstacles by generating them through a learned latent distribution. This enables efficient and safe motion planner training. We evaluate Dyna-LfLH on a ground robot in both simulated and real environments, achieving up to a 25% improvement in success rate compared to baselines.
- Abstract(参考訳): 本稿では、高密度でダイナミックな障害物のある環境をナビゲートするための運動プランナーを自己指導するDyna-LfLH(Dynamic Learning from Learned Hallucination)を紹介する。
古典的なプランナーは計算量が限られているため、密集した予測不可能な障害に苦しむ一方で、学習ベースのプランナーは、模倣学習や強化学習における探索の非効率性を扱うための高品質なデモンストレーションを取得する上で、課題に直面している。
より単純な環境で、過去の成功したナビゲーション経験からトレーニングデータを合成するLfH(Lyse on Learning from Hallucination)を構築するDyna-LfLHは、学習された潜伏分布を通じてそれらを生成することで、動的障害を取り入れている。
これにより、効率的で安全な運動プランナーのトレーニングが可能になる。
シミュレーションと実環境の両方において地上ロボット上でDyna-LfLHを評価し,ベースラインと比較して25%の精度向上を実現した。
関連論文リスト
- From Seeing to Experiencing: Scaling Navigation Foundation Models with Reinforcement Learning [59.88543114325153]
本稿では,航法基礎モデルの強化学習能力を高めるためのSeeing-to-Experiencingフレームワークを提案する。
S2Eは、ビデオの事前トレーニングとRLによるポストトレーニングの長所を組み合わせたものだ。
実世界のシーンを3DGSで再現した3D画像に基づく総合的なエンドツーエンド評価ベンチマークであるNavBench-GSを構築した。
論文 参考訳(メタデータ) (2025-07-29T17:26:10Z) - A General Infrastructure and Workflow for Quadrotor Deep Reinforcement Learning and Reality Deployment [48.90852123901697]
本稿では, エンドツーエンドの深層強化学習(DRL)ポリシーを四元数へシームレスに移行できるプラットフォームを提案する。
本プラットフォームは, ホバリング, 動的障害物回避, 軌道追尾, 気球打上げ, 未知環境における計画など, 多様な環境を提供する。
論文 参考訳(メタデータ) (2025-04-21T14:25:23Z) - Dynamic Path Navigation for Motion Agents with LLM Reasoning [69.5875073447454]
大規模言語モデル(LLM)は、強力な一般化可能な推論と計画能力を示している。
本研究では,LLMのゼロショットナビゲーションと経路生成機能について,データセットの構築と評価プロトコルの提案により検討する。
このようなタスクが適切に構成されている場合、現代のLCMは、目標に到達するために生成された動きでナビゲーションを自律的に精錬しながら障害を回避するためのかなりの計画能力を示す。
論文 参考訳(メタデータ) (2025-03-10T13:39:09Z) - Infer and Adapt: Bipedal Locomotion Reward Learning from Demonstrations
via Inverse Reinforcement Learning [5.246548532908499]
本稿では、複雑な地形上の二足歩行問題を解決するために、最先端の逆強化学習(IRL)技術を導入する。
専門家の報酬関数を学習するためのアルゴリズムを提案し、その後、学習関数を解析する。
両足歩行ポリシーを推定報酬関数で訓練することで、視認できない地形での歩行性能が向上することが実証的に実証された。
論文 参考訳(メタデータ) (2023-09-28T00:11:06Z) - Learning and Adapting Agile Locomotion Skills by Transferring Experience [71.8926510772552]
本稿では,既存のコントローラから新しいタスクを学習するために経験を移譲することで,複雑なロボティクススキルを訓練するためのフレームワークを提案する。
提案手法は,複雑なアジャイルジャンプ行動の学習,後肢を歩いたまま目標地点への移動,新しい環境への適応を可能にする。
論文 参考訳(メタデータ) (2023-04-19T17:37:54Z) - Efficient Learning of High Level Plans from Play [57.29562823883257]
本稿では,移動計画と深いRLを橋渡しするロボット学習のフレームワークであるELF-Pについて紹介する。
ELF-Pは、複数の現実的な操作タスクよりも、関連するベースラインよりもはるかに優れたサンプル効率を有することを示す。
論文 参考訳(メタデータ) (2023-03-16T20:09:47Z) - Learning-based Motion Planning in Dynamic Environments Using GNNs and
Temporal Encoding [15.58317292680615]
組込みとエッジ優先化ポリシの両方を学習するために,データアグリゲーションを用いた時間符号化と模倣学習を用いたGNNベースのアプローチを提案する。
実験により, 提案手法は, 最先端の完全な動的計画アルゴリズムよりも, オンラインプランニングを著しく高速化できることが示された。
論文 参考訳(メタデータ) (2022-10-16T01:27:16Z) - Learning to Walk by Steering: Perceptive Quadrupedal Locomotion in
Dynamic Environments [25.366480092589022]
四足歩行ロボットは、環境の乱雑さや移動する障害物に応答して、頑丈で機敏な歩行行動を示す必要がある。
本稿では,知覚的移動の問題をハイレベルな意思決定に分解する,PreLUDEという階層型学習フレームワークを提案する。
シミュレーションおよびハードウェア実験において,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-09-19T17:55:07Z) - Learning to Jump from Pixels [23.17535989519855]
我々は、高度にアジャイルな視覚的誘導行動の合成法であるDepth-based Impulse Control (DIC)を提案する。
DICは、モデルフリー学習の柔軟性を提供するが、地面反応力の明示的なモデルベース最適化により、振る舞いを規則化する。
提案手法をシミュレーションと実世界の両方で評価する。
論文 参考訳(メタデータ) (2021-10-28T17:53:06Z) - Learning High-Speed Flight in the Wild [101.33104268902208]
複雑な自然環境や人工環境を高速で自律的に飛行するエンド・ツー・エンドのアプローチを提案する。
鍵となる原理は、雑音の知覚観測を直接、後退水平方向に無衝突軌道にマッピングすることである。
現実的なセンサノイズをシミュレートすることにより,シミュレーションから現実環境へのゼロショット転送を実現する。
論文 参考訳(メタデータ) (2021-10-11T09:43:11Z) - Learning Perceptual Locomotion on Uneven Terrains using Sparse Visual
Observations [75.60524561611008]
この研究は、人中心の環境において、よく見られるバンプ、ランプ、階段の広い範囲にわたる知覚的移動を達成するために、スパースな視覚的観察の使用を活用することを目的としている。
まず、関心の均一な面を表すことのできる最小限の視覚入力を定式化し、このような外受容的・固有受容的データを統合した学習フレームワークを提案する。
本研究では, 平地を全方向歩行し, 障害物のある地形を前方移動させるタスクにおいて, 学習方針を検証し, 高い成功率を示す。
論文 参考訳(メタデータ) (2021-09-28T20:25:10Z) - Learning to Move with Affordance Maps [57.198806691838364]
物理的な空間を自律的に探索し、ナビゲートする能力は、事実上あらゆる移動型自律エージェントの基本的な要件である。
従来のSLAMベースの探索とナビゲーションのアプローチは、主にシーン幾何学の活用に重点を置いている。
学習可能な余剰マップは探索と航法の両方において従来のアプローチの強化に利用でき、性能が大幅に向上することを示します。
論文 参考訳(メタデータ) (2020-01-08T04:05:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。