論文の概要: Quantum accelerated cross regression algorithm for multiview feature extraction
- arxiv url: http://arxiv.org/abs/2403.17444v2
- Date: Wed, 29 May 2024 05:45:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 23:01:49.020324
- Title: Quantum accelerated cross regression algorithm for multiview feature extraction
- Title(参考訳): マルチビュー特徴抽出のための量子加速クロスレグレッションアルゴリズム
- Authors: Hai-Ling Liu, Ya-Qian Zhao, Ren-Gang Li, Xin Zhang,
- Abstract要約: マルチビュー特徴抽出(MvFE)は、機械学習、画像処理、その他の分野に広く応用されている。
この課題に対処するために、MvFEのための量子加速クロスレグレッションアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 9.684570781982396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-view Feature Extraction (MvFE) has wide applications in machine learning, image processing and other fields. When dealing with massive high-dimensional data, the performance of classical computer faces severe challenges due to MvFE involves expensive matrix calculation. To address this challenge, a quantum-accelerated cross-regression algorithm for MvFE is proposed. The main contributions are as follows:(1) a quantum version algorithm for MvFE is proposed for the first time, filling the gap of quantum computing in the field of MvFE;(2) a quantum algorithm is designed to construct the block-encoding of the target data matrix, so that the optimal Hamiltonian simulation technology based on the block-encoding framework can be used to efficiently realize the quantum simulation of the target data matrix. This approach reduces the dependence of the algorithm's on simulation errors to enhance algorithm performance;(3) compared with the classical counterpart algorithm, the proposed quantum algorithm has a polynomial acceleration in the number of data points, the dimension of data points and the number of view data.
- Abstract(参考訳): マルチビュー特徴抽出(MvFE)は、機械学習、画像処理、その他の分野に広く応用されている。
大規模高次元データを扱う場合、MvFEにより古典コンピュータの性能は深刻な問題に直面し、高価な行列計算を行う。
この課題に対処するために、MvFEのための量子加速クロスレグレッションアルゴリズムを提案する。
1) MvFE の分野における量子コンピューティングのギャップを埋める MvFE の量子バージョンアルゴリズムを提案し、(2) 量子アルゴリズムは対象データ行列のブロックエンコーディングを構築するように設計され、ブロックエンコーディングフレームワークに基づく最適なハミルトンシミュレーション技術を使用して、対象データ行列の量子シミュレーションを効率的に実現することができる。
提案手法は,アルゴリズムのシミュレーション誤差への依存を低減し,アルゴリズム性能を向上させる。(3)古典的アルゴリズムと比較して,提案アルゴリズムは,データ点数,データ点の次元,ビューデータ数において多項式加速度を有する。
関連論文リスト
- Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - Simulator Demonstration of Large Scale Variational Quantum Algorithm on HPC Cluster [0.0]
本研究は,2つの新しい手法を用いて量子シミュレーションを高速化することを目的とする。
VQEシミュレーションの200倍の高速化を実現し,32kbitsの地中エネルギー計算を許容時間で実証した。
論文 参考訳(メタデータ) (2024-02-19T06:34:01Z) - Improved Quantum Algorithms for Eigenvalues Finding and Gradient Descent [0.0]
ブロック符号化は、最近開発された量子アルゴリズムの統一フレームワークを形成する量子信号処理において重要な要素である。
本稿では,前述した2つの量子アルゴリズムを効果的に拡張するためにブロック符号化を利用する。
提案手法を,行列逆転や多重固有値推定など,異なる文脈に拡張する方法を示す。
論文 参考訳(メタデータ) (2023-12-22T15:59:03Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - QuOp_MPI: a framework for parallel simulation of quantum variational
algorithms [0.0]
QuOp_MPIは、量子変分アルゴリズムの並列シミュレーション用に設計されたPythonパッケージである。
量子変分アルゴリズム設計におけるオブジェクト指向アプローチを提案する。
論文 参考訳(メタデータ) (2021-10-08T08:26:09Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
3次元形状と画像のマッチング問題は、NPハードな置換行列制約を持つ二次代入問題(QAP)としてしばしば定式化される。
本稿では,量子ハードウェア上での効率的な実行に適した制約のない問題として,いくつかのQAPの再構成を提案する。
提案アルゴリズムは、将来の量子コンピューティングアーキテクチャにおいて、より高次元にスケールする可能性がある。
論文 参考訳(メタデータ) (2021-07-08T17:59:55Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
時間に依存しない深さの量子回路を生成するための構成的アルゴリズムを提案する。
一次元横フィールドXYモデルにおけるアンダーソン局在化を含む、モデルの特殊クラスに対するアルゴリズムを強調する。
幅広いスピンモデルとフェルミオンモデルに対して正確な回路を提供するのに加えて、我々のアルゴリズムは最適なハミルトニアンシミュレーションに関する幅広い解析的および数値的な洞察を提供する。
論文 参考訳(メタデータ) (2021-04-01T19:06:00Z) - Quantum Dimensionality Reduction by Linear Discriminant Analysis [14.671957651032638]
データの次元性低減(DR)は、パターン認識やデータ分類など、多くの機械学習タスクにおいて重要な問題である。
本稿では,次元減少のための線形判別分析(LDA)を効率的に行う量子アルゴリズムと量子回路を提案する。
論文 参考訳(メタデータ) (2021-03-04T16:06:30Z) - Quantum inspired K-means algorithm using matrix product states [4.846953392700506]
行列積状態は、1次元相互作用量子多体系の研究において選択のアルゴリズムとなっている。
本稿では,古典的データを行列積状態を表す量子状態にまずマッピングする量子インスパイアされたK平均クラスタリングアルゴリズムを提案する。
このアルゴリズムは,従来のK平均アルゴリズムに比べて予測精度が高く,局所最小値に閉じ込められる可能性が低いことを示す。
論文 参考訳(メタデータ) (2020-06-11T03:00:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。