論文の概要: Quantum Dimensionality Reduction by Linear Discriminant Analysis
- arxiv url: http://arxiv.org/abs/2103.03131v1
- Date: Thu, 4 Mar 2021 16:06:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-09 02:29:42.531080
- Title: Quantum Dimensionality Reduction by Linear Discriminant Analysis
- Title(参考訳): 線形判別分析による量子次元の低減
- Authors: Kai Yu, Gong-De Guo, and Song Lin
- Abstract要約: データの次元性低減(DR)は、パターン認識やデータ分類など、多くの機械学習タスクにおいて重要な問題である。
本稿では,次元減少のための線形判別分析(LDA)を効率的に行う量子アルゴリズムと量子回路を提案する。
- 参考スコア(独自算出の注目度): 14.671957651032638
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dimensionality reduction (DR) of data is a crucial issue for many machine
learning tasks, such as pattern recognition and data classification. In this
paper, we present a quantum algorithm and a quantum circuit to efficiently
perform linear discriminant analysis (LDA) for dimensionality reduction.
Firstly, the presented algorithm improves the existing quantum LDA algorithm to
avoid the error caused by the irreversibility of the between-class scatter
matrix $S_B$ in the original algorithm. Secondly, a quantum algorithm and
quantum circuits are proposed to obtain the target state corresponding to the
low-dimensional data. Compared with the best-known classical algorithm, the
quantum linear discriminant analysis dimensionality reduction (QLDADR)
algorithm has exponential acceleration on the number $M$ of vectors and a
quadratic speedup on the dimensionality $D$ of the original data space, when
the original dataset is projected onto a polylogarithmic low-dimensional space.
Moreover, the target state obtained by our algorithm can be used as a submodule
of other quantum machine learning tasks. It has practical application value of
make that free from the disaster of dimensionality.
- Abstract(参考訳): データの次元性低減(DR)は、パターン認識やデータ分類など、多くの機械学習タスクにおいて重要な問題である。
本稿では,次元減少のための線形判別分析(LDA)を効率的に行う量子アルゴリズムと量子回路を提案する。
まず,提案アルゴリズムは既存の量子ldaアルゴリズムを改善し,元のアルゴリズムにおけるクラス間散乱行列$s_b$の非可逆性による誤差を回避する。
次に,低次元データに対応する対象状態を得るために量子アルゴリズムと量子回路を提案する。
最もよく知られた古典的アルゴリズムと比較すると、量子線形判別分析次元減少 (qldadr) アルゴリズムは、元のデータ空間の次元が多対数低次元空間に投影されたとき、ベクトル数 $m$ の指数加速度と、元のデータ空間の次元 $d$ の二次速度を持つ。
さらに、本アルゴリズムにより得られた対象状態は、他の量子機械学習タスクのサブモジュールとして使用できる。
それは、それを次元の災難から解放する実用的な応用価値を持っている。
関連論文リスト
- A Catalyst Framework for the Quantum Linear System Problem via the Proximal Point Algorithm [9.804179673817574]
古典的近位点法(PPA)に着想を得た量子線形系問題(QLSP)に対する新しい量子アルゴリズムを提案する。
提案手法は,既存のtexttimattQLSP_solverを経由した修正行列の逆変換が可能なメタアルゴリズムとみなすことができる。
ステップサイズ$eta$を慎重に選択することにより、提案アルゴリズムは線形システムに対して、以前のアプローチの適用性を阻害する条件数への依存を軽減するために、効果的に事前条件を定めることができる。
論文 参考訳(メタデータ) (2024-06-19T23:15:35Z) - Preconditioning for a Variational Quantum Linear Solver [0.0]
我々は,必要アンザッツ深さの顕著な減少を数値的に示し,プレコンディショニングが量子アルゴリズムに有用であることを示す。
この結果から, プリコンディショニングなどの古典的計算手法と量子アルゴリズムを組み合わせることで, NISQアルゴリズムの性能を大幅に向上させることができることが示唆された。
論文 参考訳(メタデータ) (2023-12-25T08:50:22Z) - Solving Systems of Linear Equations: HHL from a Tensor Networks Perspective [39.58317527488534]
本稿では,HHLアルゴリズムに基づく線形方程式系の解法を,新しい四重項法を用いて提案する。
テンソルネットワーク上で量子インスパイアされたバージョンを実行し、プロジェクションのような非単体演算を行う能力を生かした。
論文 参考訳(メタデータ) (2023-09-11T08:18:41Z) - A general quantum matrix exponential dimensionality reduction framework
based on block-encoding [4.501305807267216]
行列指数次元還元(MEDR)は、線形次元化(DR)アルゴリズムに現れる小さなサンプルサイズの問題を扱う。
高複雑性がこの種のDRアルゴリズムのボトルネックとなるのは、大規模な行列指数固有確率を解く必要があるからである。
我々はブロックエンコーディング技術に基づくMEDRのための汎用量子アルゴリズムフレームワークを設計する。
論文 参考訳(メタデータ) (2023-06-16T03:36:03Z) - Accelerating the training of single-layer binary neural networks using
the HHL quantum algorithm [58.720142291102135]
Harrow-Hassidim-Lloyd (HHL) の量子力学的実装から有用な情報が抽出可能であることを示す。
しかし,本論文では,HHLの量子力学的実装から有用な情報を抽出し,古典的側面における解を見つける際の複雑性を低減することを目的としている。
論文 参考訳(メタデータ) (2022-10-23T11:58:05Z) - Quantum Algorithms for Prediction Based on Ridge Regression [0.7612218105739107]
本稿では,リッジ回帰モデルに基づく量子アルゴリズムを提案する。
提案アルゴリズムは幅広い応用範囲を持ち,提案アルゴリズムは他の量子アルゴリズムのサブルーチンとして利用することができる。
論文 参考訳(メタデータ) (2021-04-27T11:03:52Z) - Quantum Algorithms for Data Representation and Analysis [68.754953879193]
機械学習におけるデータ表現のための固有problemsの解を高速化する量子手続きを提供する。
これらのサブルーチンのパワーと実用性は、主成分分析、対応解析、潜在意味解析のための入力行列の大きさのサブ線形量子アルゴリズムによって示される。
その結果、入力のサイズに依存しない実行時のパラメータは妥当であり、計算モデル上の誤差が小さいことが示され、競合的な分類性能が得られる。
論文 参考訳(メタデータ) (2021-04-19T00:41:43Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
時間に依存しない深さの量子回路を生成するための構成的アルゴリズムを提案する。
一次元横フィールドXYモデルにおけるアンダーソン局在化を含む、モデルの特殊クラスに対するアルゴリズムを強調する。
幅広いスピンモデルとフェルミオンモデルに対して正確な回路を提供するのに加えて、我々のアルゴリズムは最適なハミルトニアンシミュレーションに関する幅広い解析的および数値的な洞察を提供する。
論文 参考訳(メタデータ) (2021-04-01T19:06:00Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
我々は、リコメンダシステムと最小二乗回帰のためのクエリをサポートする古典的な(量子でない)動的データ構造を作成する。
これらの問題に対する以前の量子インスパイアされたアルゴリズムは、レバレッジやリッジレベレッジスコアを偽装してサンプリングしていると我々は主張する。
論文 参考訳(メタデータ) (2020-11-09T01:13:07Z) - Quantum inspired K-means algorithm using matrix product states [4.846953392700506]
行列積状態は、1次元相互作用量子多体系の研究において選択のアルゴリズムとなっている。
本稿では,古典的データを行列積状態を表す量子状態にまずマッピングする量子インスパイアされたK平均クラスタリングアルゴリズムを提案する。
このアルゴリズムは,従来のK平均アルゴリズムに比べて予測精度が高く,局所最小値に閉じ込められる可能性が低いことを示す。
論文 参考訳(メタデータ) (2020-06-11T03:00:48Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
スケッチに基づくL2正規化最小二乗問題の解法を提案する。
我々は、最も人気のあるランダム埋め込みの2つ、すなわちガウス埋め込みとサブサンプリングランダム化アダマール変換(SRHT)を考える。
論文 参考訳(メタデータ) (2020-06-10T15:00:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。