論文の概要: GauStudio: A Modular Framework for 3D Gaussian Splatting and Beyond
- arxiv url: http://arxiv.org/abs/2403.19632v1
- Date: Thu, 28 Mar 2024 17:47:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 15:04:56.113544
- Title: GauStudio: A Modular Framework for 3D Gaussian Splatting and Beyond
- Title(参考訳): GauStudio: 3Dガウス平滑化と超越化のためのモジュラーフレームワーク
- Authors: Chongjie Ye, Yinyu Nie, Jiahao Chang, Yuantao Chen, Yihao Zhi, Xiaoguang Han,
- Abstract要約: GauStudioは3Dガウススティングのモデリングのための新しいフレームワーク(3DGS)
本研究では,前景とスカイボールの背景モデルを用いたハイブリッドガウス表現を提案する。
また、3DGS入力を微調整せずに高忠実度メッシュ再構成を行うための新しいレンダインフューズ手法を提案する。
- 参考スコア(独自算出の注目度): 12.981928890478175
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present GauStudio, a novel modular framework for modeling 3D Gaussian Splatting (3DGS) to provide standardized, plug-and-play components for users to easily customize and implement a 3DGS pipeline. Supported by our framework, we propose a hybrid Gaussian representation with foreground and skyball background models. Experiments demonstrate this representation reduces artifacts in unbounded outdoor scenes and improves novel view synthesis. Finally, we propose Gaussian Splatting Surface Reconstruction (GauS), a novel render-then-fuse approach for high-fidelity mesh reconstruction from 3DGS inputs without fine-tuning. Overall, our GauStudio framework, hybrid representation, and GauS approach enhance 3DGS modeling and rendering capabilities, enabling higher-quality novel view synthesis and surface reconstruction.
- Abstract(参考訳): GauStudioは3D Gaussian Splatting(3DGS)をモデリングするための新しいモジュラーフレームワークであり、ユーザが3DGSパイプラインを簡単にカスタマイズおよび実装できるように標準化されたプラグイン・アンド・プレイコンポーネントを提供する。
提案手法は,フォアグラウンドとスカイボールの背景モデルを用いたハイブリッドガウス表現を提案する。
実験では、この表現は、無制限の屋外シーンにおけるアーティファクトを減少させ、新しいビュー合成を改善する。
最後に,3DGS入力からの高忠実度メッシュ再構成を微調整なしで実現する新しいレンダリング・テーマ・フューズ手法であるGaussian Splatting Surface Reconstruction (GauS)を提案する。
全体として、GauStudioフレームワーク、ハイブリッド表現、およびGauSアプローチは、3DGSモデリングとレンダリング機能を強化し、高品質な新規ビュー合成と表面再構成を可能にした。
関連論文リスト
- NovelGS: Consistent Novel-view Denoising via Large Gaussian Reconstruction Model [57.92709692193132]
NovelGSは、スパースビュー画像が与えられたガウススプラッティングの拡散モデルである。
我々は3Dガウスを生成するためにトランスフォーマーネットワークを経由する新しい視点を利用する。
論文 参考訳(メタデータ) (2024-11-25T07:57:17Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - GS-Net: Generalizable Plug-and-Play 3D Gaussian Splatting Module [19.97023389064118]
粗いSfM点雲からガウス楕円体を密度化する3DGSモジュールであるGS-Netを提案する。
実験により、GS-Netを3DGSに適用すると、従来の視点では2.08dB、新しい視点では1.86dBのPSNR改善が得られることが示された。
論文 参考訳(メタデータ) (2024-09-17T16:03:19Z) - Textured-GS: Gaussian Splatting with Spatially Defined Color and Opacity [7.861993966048637]
Spherical Harmonics (SH) を用いたガウス平滑化手法である Textured-GS を導入する。
このアプローチにより、各ガウス多様体は、その表面の様々な色や不透明度を調節することで、よりリッチな表現を表現できる。
実験の結果,Textured-GS はベースラインのMini-Splatting と標準の3DGS を視覚的忠実度で一貫して上回っていることがわかった。
論文 参考訳(メタデータ) (2024-07-13T00:45:37Z) - WE-GS: An In-the-wild Efficient 3D Gaussian Representation for Unconstrained Photo Collections [8.261637198675151]
制約のない写真コレクションからの新規ビュー合成(NVS)は、コンピュータグラフィックスでは困難である。
写真コレクションからのシーン再構築のための効率的なポイントベース微分可能レンダリングフレームワークを提案する。
提案手法は、新しいビューのレンダリング品質と、高収束・レンダリング速度の外観合成において、既存のアプローチよりも優れている。
論文 参考訳(メタデータ) (2024-06-04T15:17:37Z) - FreeSplat: Generalizable 3D Gaussian Splatting Towards Free-View Synthesis of Indoor Scenes [50.534213038479926]
FreeSplatは、長いシーケンス入力から自由視点合成まで、幾何学的に一貫した3Dシーンを再構築することができる。
ビュー数に関係なく、広いビュー範囲にわたる堅牢なビュー合成を実現するための、シンプルで効果的なフリービュートレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-05-28T08:40:14Z) - SAGS: Structure-Aware 3D Gaussian Splatting [53.6730827668389]
本研究では,シーンの形状を暗黙的に符号化する構造認識型ガウス散乱法(SAGS)を提案する。
SAGSは、最先端のレンダリング性能と、ベンチマークノベルビュー合成データセットのストレージ要件の削減を反映している。
論文 参考訳(メタデータ) (2024-04-29T23:26:30Z) - GS2Mesh: Surface Reconstruction from Gaussian Splatting via Novel Stereo Views [9.175560202201819]
3Dガウススプラッティング(3DGS)はシーンを正確に表現するための効率的なアプローチとして登場した。
本稿では,ノイズの多い3DGS表現とスムーズな3Dメッシュ表現とのギャップを埋めるための新しい手法を提案する。
私たちは、オリジナルのトレーニングポーズに対応するステレオアライメントされたイメージのペアをレンダリングし、ペアをステレオモデルに入力して深度プロファイルを取得し、最後にすべてのプロファイルを融合して単一のメッシュを得る。
論文 参考訳(メタデータ) (2024-04-02T10:13:18Z) - GaussianStyle: Gaussian Head Avatar via StyleGAN [64.85782838199427]
本稿では,3DGSのボリューム強度とStyleGANの強力な暗黙表現を統合する新しいフレームワークを提案する。
提案手法は, 再現性, 新規なビュー合成, アニメーションにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2024-02-01T18:14:42Z) - GS-IR: 3D Gaussian Splatting for Inverse Rendering [71.14234327414086]
3次元ガウス散乱(GS)に基づく新しい逆レンダリング手法GS-IRを提案する。
我々は、未知の照明条件下で撮影された多視点画像からシーン形状、表面物質、環境照明を推定するために、新しいビュー合成のための最高のパフォーマンス表現であるGSを拡張した。
フレキシブルかつ表現力のあるGS表現は、高速かつコンパクトな幾何再構成、フォトリアリスティックな新規ビュー合成、有効物理ベースレンダリングを実現する。
論文 参考訳(メタデータ) (2023-11-26T02:35:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。