Forecasting Long-Time Dynamics in Quantum Many-Body Systems by Dynamic Mode Decomposition
- URL: http://arxiv.org/abs/2403.19947v1
- Date: Fri, 29 Mar 2024 03:10:34 GMT
- Title: Forecasting Long-Time Dynamics in Quantum Many-Body Systems by Dynamic Mode Decomposition
- Authors: Ryui Kaneko, Masatoshi Imada, Yoshiyuki Kabashima, Tomi Ohtsuki,
- Abstract summary: We propose a method that utilizes reliable short-time data of physical quantities to accurately forecast long-time behavior.
The method is based on the dynamic mode decomposition (DMD), which is commonly used in fluid dynamics.
It is demonstrated that the present method enables accurate forecasts at time as long as nearly an order of magnitude longer than that of the short-time training data.
- Score: 6.381013699474244
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Numerically computing physical quantities of time-evolved states in quantum many-body systems is a challenging task in general. Here, we propose a method that utilizes reliable short-time data of physical quantities to accurately forecast long-time behavior. The method is based on the dynamic mode decomposition (DMD), which is commonly used in fluid dynamics. The effectiveness and applicability of the DMD in quantum many-body systems such as the Ising model in the transverse field at the critical point are studied, even when the input data exhibits complicated features such as multiple oscillatory components and a power-law decay with long-ranged quantum entanglements unlike fluid dynamics. It is demonstrated that the present method enables accurate forecasts at time as long as nearly an order of magnitude longer than that of the short-time training data. Effects of noise on the accuracy of the forecast are also investigated, because they are important especially when dealing with the experimental data. We find that a few percent of noise does not affect the prediction accuracy destructively.
Related papers
- Response Estimation and System Identification of Dynamical Systems via Physics-Informed Neural Networks [0.0]
This paper explores the use of Physics-Informed Neural Networks (PINNs) for the identification and estimation of dynamical systems.
PINNs offer a unique advantage by embedding known physical laws directly into the neural network's loss function, allowing for simple embedding of complex phenomena.
The results demonstrate that PINNs deliver an efficient tool across all aforementioned tasks, even in presence of modelling errors.
arXiv Detail & Related papers (2024-10-02T08:58:30Z) - Ab-initio variational wave functions for the time-dependent many-electron Schrödinger equation [41.94295877935867]
We introduce a variational approach for fermionic time-dependent wave functions, surpassing mean-field approximations.
We use time-dependent Jastrow factors and backflow transformations, which are enhanced through neural networks parameterizations.
The results showcase the ability of our variational approach to accurately capture the time evolution, providing insight into the quantum dynamics of interacting electronic systems.
arXiv Detail & Related papers (2024-03-12T09:37:22Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Dynamics with autoregressive neural quantum states: application to
critical quench dynamics [41.94295877935867]
We present an alternative general scheme that enables one to capture long-time dynamics of quantum systems in a stable fashion.
We apply the scheme to time-dependent quench dynamics by investigating the Kibble-Zurek mechanism in the two-dimensional quantum Ising model.
arXiv Detail & Related papers (2022-09-07T15:50:00Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Scaling of temporal entanglement in proximity to integrability [0.0]
We analytically compute the exact IM for a family of integrable Floquet models.
We show that the IM exhibits area-law temporal entanglement scaling for all parameter values.
Near criticality, a non-trivial scaling behavior of temporal entanglement is found.
arXiv Detail & Related papers (2021-04-15T17:16:57Z) - Neural ODE Processes [64.10282200111983]
We introduce Neural ODE Processes (NDPs), a new class of processes determined by a distribution over Neural ODEs.
We show that our model can successfully capture the dynamics of low-dimensional systems from just a few data-points.
arXiv Detail & Related papers (2021-03-23T09:32:06Z) - Physics-aware, probabilistic model order reduction with guaranteed
stability [0.0]
We propose a generative framework for learning an effective, lower-dimensional, coarse-grained dynamical model.
We demonstrate its efficacy and accuracy in multiscale physical systems of particle dynamics.
arXiv Detail & Related papers (2021-01-14T19:16:51Z) - Bridging the Gap Between the Transient and the Steady State of a
Nonequilibrium Quantum System [58.720142291102135]
Many-body quantum systems in nonequilibrium remain one of the frontiers of many-body physics.
Recent work on strongly correlated electrons in DC electric fields illustrated that the system may evolve through successive quasi-thermal states.
We demonstrate an extrapolation scheme that uses the short-time transient calculation to obtain the retarded quantities.
arXiv Detail & Related papers (2021-01-04T06:23:01Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.