論文の概要: Harmless interpolation in regression and classification with structured
features
- arxiv url: http://arxiv.org/abs/2111.05198v1
- Date: Tue, 9 Nov 2021 15:12:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-10 15:11:38.127984
- Title: Harmless interpolation in regression and classification with structured
features
- Title(参考訳): 構造的特徴をもつ回帰と分類における無害補間
- Authors: Andrew D. McRae and Santhosh Karnik and Mark A. Davenport and Vidya
Muthukumar
- Abstract要約: 過度にパラメータ化されたニューラルネットワークは、ノイズの多いトレーニングデータに完全に適合するが、テストデータではうまく一般化する。
再生カーネルヒルベルト空間における上界回帰と分類リスクの一般かつ柔軟な枠組みを提案する。
- 参考スコア(独自算出の注目度): 21.064512161584872
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Overparametrized neural networks tend to perfectly fit noisy training data
yet generalize well on test data. Inspired by this empirical observation,
recent work has sought to understand this phenomenon of benign overfitting or
harmless interpolation in the much simpler linear model. Previous theoretical
work critically assumes that either the data features are statistically
independent or the input data is high-dimensional; this precludes general
nonparametric settings with structured feature maps. In this paper, we present
a general and flexible framework for upper bounding regression and
classification risk in a reproducing kernel Hilbert space. A key contribution
is that our framework describes precise sufficient conditions on the data Gram
matrix under which harmless interpolation occurs. Our results recover prior
independent-features results (with a much simpler analysis), but they
furthermore show that harmless interpolation can occur in more general settings
such as features that are a bounded orthonormal system. Furthermore, our
results show an asymptotic separation between classification and regression
performance in a manner that was previously only shown for Gaussian features.
- Abstract(参考訳): 過度にパラメータ化されたニューラルネットワークは、ノイズの多いトレーニングデータに完全に適合するが、テストデータではうまく一般化する。
この経験的観察から着想を得た最近の研究は、より単純な線形モデルにおいて、良性過剰あるいは無害な補間というこの現象を理解しようと試みている。
以前の理論研究は、データ特徴が統計的に独立であるか、入力データが高次元であるかを批判的に想定している。
本稿では,再生核ヒルベルト空間における上界回帰と分類リスクに対する汎用的で柔軟な枠組みを提案する。
重要な貢献は、このフレームワークが、無害な補間が発生するデータグラム行列の正確な条件を記述することである。
本研究の結果は, より単純な解析により, 従来の独立機能の結果を復元するが, さらに, 有界正則系である特徴など, より一般的な条件下で無害補間が生じることが示唆された。
さらに,従来ガウス的特徴に対してのみ示されていたように,分類と回帰性能の漸近的分離がみられた。
関連論文リスト
- Minimum-Norm Interpolation Under Covariate Shift [14.863831433459902]
高次元線形回帰に関する非分布研究は、テキシトベニンオーバーフィッティング(textitbenign overfitting)として知られる現象の同定につながった。
本稿では,移動学習環境における線形補間器の非漸近的過剰リスク境界を初めて証明する。
論文 参考訳(メタデータ) (2024-03-31T01:41:57Z) - Gradient-Based Feature Learning under Structured Data [57.76552698981579]
異方性設定では、一般的に使用される球面勾配力学は真の方向を回復できないことがある。
バッチ正規化を連想させる適切な重み正規化は、この問題を軽減することができることを示す。
特に、スパイクモデルの下では、勾配に基づくトレーニングのサンプルの複雑さは情報指数とは独立にできる。
論文 参考訳(メタデータ) (2023-09-07T16:55:50Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - Learning Linear Causal Representations from Interventions under General
Nonlinear Mixing [52.66151568785088]
介入対象にアクセスできることなく、未知の単一ノード介入を考慮し、強い識別可能性を示す。
これは、ディープニューラルネットワークの埋め込みに対する非ペアの介入による因果識別性の最初の例である。
論文 参考訳(メタデータ) (2023-06-04T02:32:12Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
異なるスコアに基づく因果探索法は観測データから有向非巡回グラフを学習する。
本稿では,Reweighted Score関数ReScoreの適応重みを動的に学習することにより因果発見性能を向上させるためのモデルに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-06T14:49:59Z) - The Interplay Between Implicit Bias and Benign Overfitting in Two-Layer
Linear Networks [51.1848572349154]
ノイズの多いデータに完全に適合するニューラルネットワークモデルは、見当たらないテストデータにうまく一般化できる。
我々は,2層線形ニューラルネットワークを2乗損失の勾配流で補間し,余剰リスクを導出する。
論文 参考訳(メタデータ) (2021-08-25T22:01:01Z) - Binary Classification of Gaussian Mixtures: Abundance of Support
Vectors, Benign Overfitting and Regularization [39.35822033674126]
生成ガウス混合モデルに基づく二項線形分類について検討する。
後者の分類誤差に関する新しい非漸近境界を導出する。
この結果は, 確率が一定である雑音モデルに拡張される。
論文 参考訳(メタデータ) (2020-11-18T07:59:55Z) - Benign overfitting in ridge regression [0.0]
過度にパラメータ化されたリッジ回帰に対する漸近的でない一般化境界を提供する。
最小あるいは負の正則化が小さい一般化誤差を得るのに十分であるかどうかを同定する。
論文 参考訳(メタデータ) (2020-09-29T20:00:31Z) - The Neural Tangent Kernel in High Dimensions: Triple Descent and a
Multi-Scale Theory of Generalization [34.235007566913396]
現代のディープラーニングモデルでは、トレーニングデータに適合するために必要なパラメータよりもはるかに多くのパラメータが採用されている。
この予期せぬ振る舞いを記述するための新たなパラダイムは、エンファンダブル降下曲線(英語版)である。
本稿では,勾配降下を伴う広帯域ニューラルネットワークの挙動を特徴付けるニューラル・タンジェント・カーネルを用いた一般化の高精度な高次元解析を行う。
論文 参考訳(メタデータ) (2020-08-15T20:55:40Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - Linear predictor on linearly-generated data with missing values: non
consistency and solutions [0.0]
本研究では,予測対象が全観測データの線形関数である場合について検討する。
不足する値が存在する場合、最適予測器は線形でない可能性があることを示す。
論文 参考訳(メタデータ) (2020-02-03T11:49:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。