論文の概要: Classical modelling of a lossy Gaussian bosonic sampler
- arxiv url: http://arxiv.org/abs/2404.01004v1
- Date: Mon, 1 Apr 2024 09:19:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 22:56:51.579082
- Title: Classical modelling of a lossy Gaussian bosonic sampler
- Title(参考訳): 損失ガウスボソニックサンプリング器の古典的モデリング
- Authors: M. V. Umanskii, A. N. Rubtsov,
- Abstract要約: 損失GBSインスタンスの近似古典シミュレーションのためのアルゴリズムを提案する。
アルゴリズムの複雑さは、項数が固定されたときのモードの数を絞っている。
量子的優位性を証明したと主張する最近の実験では、これらの条件が満たされている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gaussian boson sampling (GBS) is considered a candidate problem for demonstrating quantum advantage. We propose an algorithm for approximate classical simulation of a lossy GBS instance. The algorithm relies on the Taylor series expansion, and increasing the number of terms of the expansion that are used in the calculation yields greater accuracy. The complexity of the algorithm is polynomial in the number of modes given the number of terms is fixed. We describe conditions for the input state squeezing parameter and loss level that provide the best efficiency for this algorithm (by efficient we mean that the Taylor series converges quickly). In recent experiments that claim to have demonstrated quantum advantage, these conditions are satisfied; thus, this algorithm can be used to classically simulate these experiments.
- Abstract(参考訳): ガウスボソンサンプリング(GBS)は量子優位性を示すための候補問題と考えられている。
損失GBSインスタンスの近似古典シミュレーションのためのアルゴリズムを提案する。
このアルゴリズムはテイラー級数展開に依存し、計算に使用される展開の項数を増やすことで精度が向上する。
アルゴリズムの複雑さは、項数が固定されたときのモード数の多項式である。
入力状態スクイーズパラメータと損失レベルの条件を記述し、このアルゴリズムに最適な効率性を与える(効率性によってテイラー級数は急速に収束する)。
量子的優位性を証明したと主張する最近の実験では、これらの条件は満たされており、このアルゴリズムは古典的にこれらの実験をシミュレートすることができる。
関連論文リスト
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
最近提案された量子アルゴリズムarXiv:2206.14999は半定値プログラミング(SDP)に基づいている
SDPにインスパイアされた量子アルゴリズムを2乗和に一般化する。
この結果から,本アルゴリズムは大きな問題に適応し,最もよく知られた古典学に近似することが示唆された。
論文 参考訳(メタデータ) (2024-08-14T19:04:13Z) - Quantum and classical algorithms for nonlinear unitary dynamics [0.5729426778193399]
我々は$fracd|urangledtという形の非線形微分方程式に対する量子アルゴリズムを提案する。
また,Euler法に基づく古典的アルゴリズムを導入し,制限された場合の量子アルゴリズムへのコンパラブルなスケーリングを実現する。
論文 参考訳(メタデータ) (2024-07-10T14:08:58Z) - Classical simulation of non-Gaussian bosonic circuits [0.4972323953932129]
ガウス状態の重ね合わせに適用したボソニックリニア光回路をシミュレートするための高速な古典的アルゴリズムを提案する。
本稿では,回路のモード数とサイズを正確にシミュレーションするアルゴリズムを提案する。
また、この数で実行が2次となる高速な近似ランダム化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-27T23:52:35Z) - Classical algorithm for simulating experimental Gaussian boson sampling [2.1684911254068906]
ガウスボソンサンプリングは実験的量子優位性を示す有望な候補である。
高い光子損失率とノイズの存在にもかかわらず、それらは現在、最もよく知られた古典的アルゴリズムで古典的にシミュレートすることが難しいと主張されている。
本稿ではガウスボソンサンプリングをシミュレートする古典的テンソルネットワークアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-06T14:19:48Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
本稿では,n+1$ qubitsしか使用しないGoemans-Williamsonアルゴリズムの変分量子アルゴリズムを提案する。
補助量子ビット上で適切にパラメータ化されたユニタリ条件として目的行列を符号化することにより、効率的な最適化を実現する。
各種NPハード問題に対して,Goemans-Williamsonアルゴリズムの量子的効率的な実装を考案し,提案プロトコルの有効性を実証する。
論文 参考訳(メタデータ) (2022-06-30T03:15:23Z) - Adaptive Algorithm for Quantum Amplitude Estimation [13.82667502131475]
振幅の間隔推定のための適応アルゴリズムを提案する。
提案アルゴリズムは、同じレベルの精度を達成するために、同じ数の量子クエリを使用する。
我々は,古典モンテカルロサンプリングに対する2次高速化として,オラクルクエリの数が$O(1/epsilon)$に達することを厳密に証明する。
論文 参考訳(メタデータ) (2022-06-16T21:11:15Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
提案されたハイブリッドアルゴリズムは、コスト関数をハミルトニアン問題にエンコードし、回路の複雑さの低い一連の状態によってエネルギーを最適化する。
レベル$p=2,ldots, 6$の場合、予想される近似比をほぼ維持しながら、レベル$p$を1に減らすことができる。
論文 参考訳(メタデータ) (2022-03-01T19:47:16Z) - Bregman divergence based em algorithm and its application to classical
and quantum rate distortion theory [61.12008553173672]
本稿では,Bregman分散系における指数サブファミリーと混合サブファミリー間のBregman分散の最小化問題に対処する。
このアルゴリズムを量子設定を含む歪みとその変種の評価に適用する。
論文 参考訳(メタデータ) (2022-01-07T13:33:28Z) - Noisy Bayesian optimization for variational quantum eigensolvers [0.0]
変分量子固有解法(VQE)は、ハミルトニアン基底状態を見つけるために用いられるハイブリッド量子古典アルゴリズムである。
この研究は、現在利用可能な量子コンピュータ上でVQEを実行するのに適したGPRとBOの実装を提案する。
論文 参考訳(メタデータ) (2021-12-01T11:28:55Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
我々は、リコメンダシステムと最小二乗回帰のためのクエリをサポートする古典的な(量子でない)動的データ構造を作成する。
これらの問題に対する以前の量子インスパイアされたアルゴリズムは、レバレッジやリッジレベレッジスコアを偽装してサンプリングしていると我々は主張する。
論文 参考訳(メタデータ) (2020-11-09T01:13:07Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
このアルゴリズムのクラスは、最小二乗問題に対する最も高速な解法のうち、いくつかのランダム化手法を含んでいる。
我々は2つの古典的埋め込み、すなわちガウス射影とアダマール変換のサブサンプリングに焦点を当てる。
得られたアルゴリズムは条件数に依存しない最小二乗問題の解法として最も複雑である。
論文 参考訳(メタデータ) (2020-02-21T17:45:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。