論文の概要: Ukrainian Texts Classification: Exploration of Cross-lingual Knowledge Transfer Approaches
- arxiv url: http://arxiv.org/abs/2404.02043v1
- Date: Tue, 2 Apr 2024 15:37:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-03 15:49:31.936978
- Title: Ukrainian Texts Classification: Exploration of Cross-lingual Knowledge Transfer Approaches
- Title(参考訳): ウクライナ語テキスト分類 : 言語間知識伝達アプローチの探索
- Authors: Daryna Dementieva, Valeriia Khylenko, Georg Groh,
- Abstract要約: 典型的なテキスト分類タスクにはウクライナのコーパスが欠如している。
手動データキュレーションを回避するために,言語間知識伝達手法について検討する。
3つのテキスト分類タスクに対するアプローチを検証した。
- 参考スコア(独自算出の注目度): 11.508759658889382
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the extensive amount of labeled datasets in the NLP text classification field, the persistent imbalance in data availability across various languages remains evident. Ukrainian, in particular, stands as a language that still can benefit from the continued refinement of cross-lingual methodologies. Due to our knowledge, there is a tremendous lack of Ukrainian corpora for typical text classification tasks. In this work, we leverage the state-of-the-art advances in NLP, exploring cross-lingual knowledge transfer methods avoiding manual data curation: large multilingual encoders and translation systems, LLMs, and language adapters. We test the approaches on three text classification tasks -- toxicity classification, formality classification, and natural language inference -- providing the "recipe" for the optimal setups.
- Abstract(参考訳): NLPテキスト分類分野におけるラベル付きデータセットの多さにもかかわらず、様々な言語におけるデータ可用性の持続的不均衡は明らかである。
特にウクライナ語は、言語間の方法論の洗練の継続から恩恵を受けることができる言語である。
我々の知る限り、典型的なテキスト分類タスクにはウクライナのコーパスが欠如している。
本研究では,NLPの最先端技術を活用し,多言語エンコーダや翻訳システム,LLM,言語アダプタなど,手動データキュレーションを回避する言語間知識伝達手法を探索する。
我々は,3つのテキスト分類タスク(毒性分類,形式分類,自然言語推論)に対して,最適設定のための"レシピ"を提供するアプローチを検証した。
関連論文リスト
- Trans-Tokenization and Cross-lingual Vocabulary Transfers: Language Adaptation of LLMs for Low-Resource NLP [13.662528492286528]
本稿では,この課題に対処し,より効率的な言語適応を実現するために,新たな言語間語彙移動戦略であるトランストークン化を提案する。
提案手法は,ソースコードからの意味論的に類似したトークン埋め込みの重み付け平均を用いて,ターゲット言語のトークン埋め込みを初期化することにより,高リソースのモノリンガルLLMを未知のターゲット言語に適応することに焦点を当てる。
複数のスワップ可能な言語モデリングヘッドと埋め込みテーブルを備えたモデルであるHydra LLMを導入し、トランストークン化戦略の能力をさらに拡張した。
論文 参考訳(メタデータ) (2024-08-08T08:37:28Z) - UniPSDA: Unsupervised Pseudo Semantic Data Augmentation for Zero-Shot Cross-Lingual Natural Language Understanding [31.272603877215733]
言語間の表現学習は、リソースに富んだデータからリソースに密着したデータへ知識を伝達し、異なる言語の意味理解能力を改善する。
言語間自然言語理解のためのunsupervised Pseudo Semantic Data Augmentation (UniPSDA) 機構を提案する。
論文 参考訳(メタデータ) (2024-06-24T07:27:01Z) - Universal Cross-Lingual Text Classification [0.3958317527488535]
本研究は,言語横断テキスト分類における新たな視点を提案する。
我々のアプローチは、訓練中に異なる言語からの教師付きデータをブレンドして普遍的なモデルを作成することである。
主な目標は、ラベルと言語カバレッジを強化することであり、様々な言語のラベルの結合を表すラベルセットを目指している。
論文 参考訳(メタデータ) (2024-06-16T17:58:29Z) - Constructing and Expanding Low-Resource and Underrepresented Parallel Datasets for Indonesian Local Languages [0.0]
インドネシアの5つの言語を特徴とする多言語並列コーパスであるBhinneka Korpusを紹介する。
我々のゴールは、これらの資源へのアクセスと利用を強化し、国内へのリーチを広げることです。
論文 参考訳(メタデータ) (2024-04-01T09:24:06Z) - Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
最先端自然言語処理(NLP)モデルは、大規模なトレーニングコーパスでトレーニングされ、評価データセットで最上位のパフォーマンスを報告します。
この調査は、これらのデータセットの重要な属性である言語の方言を掘り下げる。
方言データセットにおけるNLPモデルの性能劣化と言語技術のエクイティへのその影響を動機として,我々はデータセットやアプローチの観点から,方言に対するNLPの過去の研究を調査した。
論文 参考訳(メタデータ) (2024-01-11T03:04:38Z) - NusaWrites: Constructing High-Quality Corpora for Underrepresented and
Extremely Low-Resource Languages [54.808217147579036]
インドネシアの地方言語について事例研究を行う。
データセット構築におけるオンラインスクラップ,人文翻訳,および母語話者による段落作成の有効性を比較した。
本研究は,母語話者による段落作成によって生成されたデータセットが,語彙的多様性と文化的内容の点で優れた品質を示すことを示す。
論文 参考訳(メタデータ) (2023-09-19T14:42:33Z) - T3L: Translate-and-Test Transfer Learning for Cross-Lingual Text
Classification [50.675552118811]
言語間テキスト分類は通常、様々な言語で事前訓練された大規模多言語言語モデル(LM)に基づいて構築される。
本稿では,古典的な「翻訳とテスト」パイプラインを再考し,翻訳と分類の段階を適切に分離することを提案する。
論文 参考訳(メタデータ) (2023-06-08T07:33:22Z) - Expanding Pretrained Models to Thousands More Languages via
Lexicon-based Adaptation [133.7313847857935]
我々の研究は、NLPメソッドが現在の技術で不足している何千もの言語にどのように適応できるかを強調した。
3つのタスクにまたがる19の非表現言語に対して、我々の手法は、それぞれ追加のモノリンガルテキストによる最大5点と15点の改善をもたらす。
論文 参考訳(メタデータ) (2022-03-17T16:48:22Z) - From Masked Language Modeling to Translation: Non-English Auxiliary
Tasks Improve Zero-shot Spoken Language Understanding [24.149299722716155]
非常に低リソースの方言を含む6言語ファミリーの13言語を対象に,言語間SlotとIntent Detectionの新しいベンチマークであるxSIDを紹介した。
本研究では,英語SLU学習データと原文,構文,翻訳による非英語補助課題を併用した共同学習手法を提案する。
その結果,マスキング言語モデルによる主タスクの学習はスロットに有効であり,機械翻訳は意図分類に最適であることがわかった。
論文 参考訳(メタデータ) (2021-05-15T23:51:11Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z) - A Study of Cross-Lingual Ability and Language-specific Information in
Multilingual BERT [60.9051207862378]
Multilingual BERTは、言語間転送タスクで驚くほどうまく機能します。
データサイズとコンテキストウィンドウサイズは、転送可能性にとって重要な要素です。
多言語BERTの言語間能力を改善するために、計算的に安価だが効果的なアプローチがある。
論文 参考訳(メタデータ) (2020-04-20T11:13:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。