Leveraging Machine Learning for Early Autism Detection via INDT-ASD Indian Database
- URL: http://arxiv.org/abs/2404.02181v1
- Date: Tue, 2 Apr 2024 12:44:51 GMT
- Title: Leveraging Machine Learning for Early Autism Detection via INDT-ASD Indian Database
- Authors: Trapti Shrivastava, Harshal Chaudhari, Vrijendra Singh,
- Abstract summary: Autism spectrum disorder (ASD) is one of the developmental disorders that is growing the fastest globally.
This study aimed to develop a simple, quick, and inexpensive technique for identifying ASD by using machine learning.
Various machine learning classifiers, including Adaboost (AB), Gradient Boost (GB), Decision Tree (DT), Logistic Regression (LR), Random Forest (RF), Gaussian Naive Bayes (GNB), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), K-Nearest Neighbors (KNN), and Support Vector Machine (SVM)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning (ML) has advanced quickly, particularly throughout the area of health care. The diagnosis of neurodevelopment problems using ML is a very important area of healthcare. Autism spectrum disorder (ASD) is one of the developmental disorders that is growing the fastest globally. The clinical screening tests used to identify autistic symptoms are expensive and time-consuming. But now that ML has been advanced, it's feasible to identify autism early on. Previously, many different techniques have been used in investigations. Still, none of them have produced the anticipated outcomes when it comes to the capacity to predict autistic features utilizing a clinically validated Indian ASD database. Therefore, this study aimed to develop a simple, quick, and inexpensive technique for identifying ASD by using ML. Various machine learning classifiers, including Adaboost (AB), Gradient Boost (GB), Decision Tree (DT), Logistic Regression (LR), Random Forest (RF), Gaussian Naive Bayes (GNB), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), K-Nearest Neighbors (KNN), and Support Vector Machine (SVM), were used to develop the autism prediction model. The proposed method was tested with records from the AIIMS Modified INDT-ASD (AMI) database, which were collected through an application developed by AIIMS in Delhi, India. Feature engineering has been applied to make the proposed solution easier than already available solutions. Using the proposed model, we succeeded in predicting ASD using a minimized set of 20 questions rather than the 28 questions presented in AMI with promising accuracy. In a comparative evaluation, SVM emerged as the superior model among others, with 100 $\pm$ 0.05\% accuracy, higher recall by 5.34\%, and improved accuracy by 2.22\%-6.67\% over RF. We have also introduced a web-based solution supporting both Hindi and English.
Related papers
- Explainable AI for Autism Diagnosis: Identifying Critical Brain Regions Using fMRI Data [0.29687381456163997]
Early diagnosis and intervention for Autism Spectrum Disorder (ASD) has been shown to significantly improve the quality of life of autistic individuals.
There is a need for objective biomarkers of ASD which can help improve diagnostic accuracy.
Deep learning (DL) has achieved outstanding performance in diagnosing diseases and conditions from medical imaging data.
This research aims to improve the accuracy and interpretability of ASD diagnosis by creating a DL model that can not only accurately classify ASD but also provide explainable insights into its working.
arXiv Detail & Related papers (2024-09-19T23:08:09Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Enhancing ASD detection accuracy: a combined approach of machine
learning and deep learning models with natural language processing [0.0]
Our study explored the use of artificial intelligence (AI) to diagnose autism spectrum disorder (ASD)
It focused on machine learning (ML) and deep learning (DL) to detect ASD from text inputs on social media.
Our AI models showed high accuracy, with an 88% success rate in identifying texts from individuals with ASD.
arXiv Detail & Related papers (2024-03-06T09:57:42Z) - DDxT: Deep Generative Transformer Models for Differential Diagnosis [51.25660111437394]
We show that a generative approach trained with simpler supervised and self-supervised learning signals can achieve superior results on the current benchmark.
The proposed Transformer-based generative network, named DDxT, autoregressively produces a set of possible pathologies, i.e., DDx, and predicts the actual pathology using a neural network.
arXiv Detail & Related papers (2023-12-02T22:57:25Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Exploiting prompt learning with pre-trained language models for
Alzheimer's Disease detection [70.86672569101536]
Early diagnosis of Alzheimer's disease (AD) is crucial in facilitating preventive care and to delay further progression.
This paper investigates the use of prompt-based fine-tuning of PLMs that consistently uses AD classification errors as the training objective function.
arXiv Detail & Related papers (2022-10-29T09:18:41Z) - Development of an autism screening classification model for toddlers [0.0]
Autism spectrum disorder ASD is a neurodevelopmental disorder associated with challenges in communication, social interaction, and repetitive behaviors.
This work contributes to the early screening of toddlers by helping identify those who have ASD traits and should pursue formal clinical diagnosis.
arXiv Detail & Related papers (2021-09-29T09:07:39Z) - Automatic Assessment of Alzheimer's Disease Diagnosis Based on Deep
Learning Techniques [111.165389441988]
This work is to develop a system that automatically detects the presence of the disease in sagittal magnetic resonance images (MRI)
Although sagittal-plane MRIs are not commonly used, this work proved that they were, at least, as effective as MRI from other planes at identifying AD in early stages.
This study proved that DL models could be built in these fields, whereas TL is an essential tool for completing the task with fewer examples.
arXiv Detail & Related papers (2021-05-18T11:37:57Z) - Developing a New Autism Diagnosis Process Based on a Hybrid Deep
Learning Architecture Through Analyzing Home Videos [1.2691047660244335]
Currently, every 1 in 54 children have been diagnosed with Autism Spectrum Disorder (ASD), which is 178% higher than it was in 2000.
We propose to develop a hybrid architecture using both categorical data and image data to automate traditional ASD pre-screening.
arXiv Detail & Related papers (2021-04-02T17:30:35Z) - Detecting Autism Spectrum Disorder using Machine Learning [3.2861753207533937]
Sequential minimal optimization (SMO) based Support Vector Machines (SVM) classifier outperforms all other benchmark machine learning algorithms.
Relief Attributes algorithm is the best to identify the most significant attributes in ASD datasets.
arXiv Detail & Related papers (2020-09-30T08:33:12Z) - Early Autism Spectrum Disorders Diagnosis Using Eye-Tracking Technology [62.997667081978825]
Lack of money, absence of qualified specialists, and low level of trust to the correction methods are the main issues that affect the in-time diagnoses of ASD.
Our team developed the algorithm that will be able to predict the chances of ASD according to the information from the gaze activity of the child.
arXiv Detail & Related papers (2020-08-21T20:22:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.