Vestibular schwannoma growth prediction from longitudinal MRI by time conditioned neural fields
- URL: http://arxiv.org/abs/2404.02614v2
- Date: Thu, 4 Apr 2024 08:57:00 GMT
- Title: Vestibular schwannoma growth prediction from longitudinal MRI by time conditioned neural fields
- Authors: Yunjie Chen, Jelmer M. Wolterink, Olaf M. Neve, Stephan R. Romeijn, Berit M. Verbist, Erik F. Hensen, Qian Tao, Marius Staring,
- Abstract summary: We introduce DeepGrowth, a deep learning method that incorporates neural fields and recurrent neural networks for prospective tumor growth prediction.
The experiments on an in-house longitudinal VS dataset showed that the proposed model significantly improved the performance.
- Score: 5.662694302758444
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vestibular schwannomas (VS) are benign tumors that are generally managed by active surveillance with MRI examination. To further assist clinical decision-making and avoid overtreatment, an accurate prediction of tumor growth based on longitudinal imaging is highly desirable. In this paper, we introduce DeepGrowth, a deep learning method that incorporates neural fields and recurrent neural networks for prospective tumor growth prediction. In the proposed method, each tumor is represented as a signed distance function (SDF) conditioned on a low-dimensional latent code. Unlike previous studies that perform tumor shape prediction directly in the image space, we predict the latent codes instead and then reconstruct future shapes from it. To deal with irregular time intervals, we introduce a time-conditioned recurrent module based on a ConvLSTM and a novel temporal encoding strategy, which enables the proposed model to output varying tumor shapes over time. The experiments on an in-house longitudinal VS dataset showed that the proposed model significantly improved the performance ($\ge 1.6\%$ Dice score and $\ge0.20$ mm 95\% Hausdorff distance), in particular for top 20\% tumors that grow or shrink the most ($\ge 4.6\%$ Dice score and $\ge 0.73$ mm 95\% Hausdorff distance). Our code is available at ~\burl{https://github.com/cyjdswx/DeepGrowth}
Related papers
- Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Treatment-aware Diffusion Probabilistic Model for Longitudinal MRI
Generation and Diffuse Glioma Growth Prediction [0.5806504980491878]
We present a novel end-to-end network capable of generating future tumor masks and realistic MRIs of how the tumor will look at any future time points.
Our approach is based on cutting-edge diffusion probabilistic models and deep-segmentation neural networks.
arXiv Detail & Related papers (2023-09-11T12:12:52Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
We present a deep learning-based brain tumor recurrence location prediction network.
We first train a multi-modal brain tumor segmentation network on the public dataset BraTS 2021.
Then, the pre-trained encoder is transferred to our private dataset for extracting the rich semantic features.
Two decoders are constructed to jointly segment the present brain tumor and predict its future tumor recurrence location.
arXiv Detail & Related papers (2023-04-11T02:45:38Z) - Deep Learning for Reaction-Diffusion Glioma Growth Modelling: Towards a
Fully Personalised Model? [0.2609639566830968]
Reaction-diffusion models have been proposed for decades to capture the growth of gliomas.
Deep convolutional neural networks (DCNNs) can address the pitfalls commonly encountered in the field.
This approach may open the perspective of a clinical application of reaction-diffusion growth models for tumour prognosis and treatment planning.
arXiv Detail & Related papers (2021-11-26T10:16:57Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Learn-Morph-Infer: a new way of solving the inverse problem for brain
tumor modeling [1.1214822628210914]
We introduce a methodology for inferring patient-specific spatial distribution of brain tumor from T1Gd and FLAIR MRI medical scans.
Coined as itLearn-Morph-Infer, the method achieves real-time performance in the order of minutes on widely available hardware.
arXiv Detail & Related papers (2021-11-07T13:45:35Z) - Robust Compressed Sensing MRI with Deep Generative Priors [84.69062247243953]
We present the first successful application of the CSGM framework on clinical MRI data.
We train a generative prior on brain scans from the fastMRI dataset, and show that posterior sampling via Langevin dynamics achieves high quality reconstructions.
arXiv Detail & Related papers (2021-08-03T08:52:06Z) - Glioma Prognosis: Segmentation of the Tumor and Survival Prediction
using Shape, Geometric and Clinical Information [13.822139791199106]
We exploit a convolutional neural network (CNN) with hypercolumn technique to segment tumor from healthy brain tissue.
Our model achieves a mean dice accuracy of 87.315%, 77.04% and 70.22% for the whole tumor, tumor core and enhancing tumor respectively.
arXiv Detail & Related papers (2021-04-02T10:49:05Z) - Multiclass Spinal Cord Tumor Segmentation on MRI with Deep Learning [3.2803205051531235]
We present a cascaded architecture with U-Net-based models that segments tumors in a two-stage process: locate and label.
The segmentation of the tumor, cavity, and edema (as a single class) reached 76.7 $pm$ 1.5% of Dice score and the segmentation of tumors alone reached 61.8 $pm$ 4.0% Dice score.
arXiv Detail & Related papers (2020-12-23T17:31:08Z) - Brain tumor segmentation with self-ensembled, deeply-supervised 3D U-net
neural networks: a BraTS 2020 challenge solution [56.17099252139182]
We automate and standardize the task of brain tumor segmentation with U-net like neural networks.
Two independent ensembles of models were trained, and each produced a brain tumor segmentation map.
Our solution achieved a Dice of 0.79, 0.89 and 0.84, as well as Hausdorff 95% of 20.4, 6.7 and 19.5mm on the final test dataset.
arXiv Detail & Related papers (2020-10-30T14:36:10Z) - Learning Tumor Growth via Follow-Up Volume Prediction for Lung Nodules [15.069141581681016]
Follow-up serves an important role in the management of pulmonary nodules for lung cancer.
Recent deep learning studies using convolutional neural networks (CNNs) to predict the malignancy score of nodules, only provides clinicians with black-box predictions.
We propose a unified framework, named Nodule Follow-Up Prediction Network (NoFoNet), which predicts the growth of pulmonary nodules with high-quality visual appearances and accurate quantitative results.
arXiv Detail & Related papers (2020-06-24T17:18:46Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.