論文の概要: Discontinuity-preserving Normal Integration with Auxiliary Edges
- arxiv url: http://arxiv.org/abs/2404.03138v1
- Date: Thu, 4 Apr 2024 01:22:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 16:03:13.250381
- Title: Discontinuity-preserving Normal Integration with Auxiliary Edges
- Title(参考訳): 補助エッジによる不連続保存正規化
- Authors: Hyomin Kim, Yucheol Jung, Seungyong Lee,
- Abstract要約: 補助エッジを導入し、ドメイン内の断片的に滑らかなパッチ間をブリッジすることで、隠れたジャンプの規模を明示的に表現できるようにします。
提案手法は, 繰り返し再重み付き最小二乗と, 補助エッジ上の跳躍等級の反復フィルタリングを組み合わせることで, 不連続性を最適化する。
従来の不連続性保存正規積分法と比較して,ジャンプの明示的な表現により,微不連続性を正確に再構成する。
- 参考スコア(独自算出の注目度): 8.785723205910658
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many surface reconstruction methods incorporate normal integration, which is a process to obtain a depth map from surface gradients. In this process, the input may represent a surface with discontinuities, e.g., due to self-occlusion. To reconstruct an accurate depth map from the input normal map, hidden surface gradients occurring from the jumps must be handled. To model these jumps correctly, we design a novel discretization scheme for the domain of normal integration. Our key idea is to introduce auxiliary edges, which bridge between piecewise-smooth patches in the domain so that the magnitude of hidden jumps can be explicitly expressed. Using the auxiliary edges, we design a novel algorithm to optimize the discontinuity and the depth map from the input normal map. Our method optimizes discontinuities by using a combination of iterative re-weighted least squares and iterative filtering of the jump magnitudes on auxiliary edges to provide strong sparsity regularization. Compared to previous discontinuity-preserving normal integration methods, which model the magnitudes of jumps only implicitly, our method reconstructs subtle discontinuities accurately thanks to our explicit representation of jumps allowing for strong sparsity regularization.
- Abstract(参考訳): 多くの表面再構成法には正規積分が組み込まれており、これは表面勾配から深度マップを得る過程である。
この過程において、入力は自己閉塞性により不連続な曲面、例えば g を表わすことができる。
入力された正規写像から正確な深度マップを再構築するには、ジャンプから発生する隠れ表面勾配を処理しなければならない。
これらのジャンプを正確にモデル化するために、正規積分領域のための新しい離散化スキームを設計する。
私たちのキーとなるアイデアは補助エッジの導入です。これはドメイン内の断片的にスムースなパッチをブリッジすることで、隠れたジャンプの規模を明示的に表現できるようにします。
補助エッジを用いて,入力正規写像から不連続性と深度マップを最適化する新しいアルゴリズムを設計する。
提案手法は, 繰り返し再重み付き最小二乗と補助エッジ上の跳躍等級の反復フィルタリングを組み合わせることで不連続性を最適化し, 強いスパーシリティ正則化を実現する。
ジャンプの大きさを暗黙的にのみモデル化する従来の不連続保存正規積分法と比較して, ジャンプの明示的な表現により, 厳密な不連続性を正確に再構成する。
関連論文リスト
- Neural Octahedral Field: Octahedral prior for simultaneous smoothing and sharp edge regularization [9.167571374234166]
そこで本研究では,オクタヘドラル場(Octahedral field)の新たな変種下での表面再構成を導くことを提案する。
暗黙の幾何とともに八面体を同時に嵌め、滑らかにすることで、二元フィルタリングと類似して振る舞う。
提案手法は, 様々な実験において, 従来型, ニューラルなアプローチより優れている。
論文 参考訳(メタデータ) (2024-08-01T06:02:59Z) - High-quality Surface Reconstruction using Gaussian Surfels [18.51978059665113]
本稿では,3次元ガウス点におけるフレキシブルな最適化手法の利点を組み合わせるために,新しい点ベース表現であるガウス波について提案する。
これは、3Dガウス点のzスケールを0に設定し、元の3D楕円体を2D楕円形に効果的に平らにする。
局所的なz軸を通常の方向として扱うことにより、最適化安定性と表面アライメントを大幅に改善する。
論文 参考訳(メタデータ) (2024-04-27T04:13:39Z) - NeuralGF: Unsupervised Point Normal Estimation by Learning Neural
Gradient Function [55.86697795177619]
3次元点雲の正規推定は3次元幾何処理の基本的な課題である。
我々は,ニューラルネットワークが入力点雲に適合することを奨励する,ニューラルグラデーション関数の学習のための新しいパラダイムを導入する。
広範に使用されているベンチマークの優れた結果から,本手法は非指向性および指向性正常推定タスクにおいて,より正確な正規性を学習できることが示されている。
論文 参考訳(メタデータ) (2023-11-01T09:25:29Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
本稿では,ニューラルネットワークトレーニングを安定化(大規模)するための原理的手法として,線形アヘッドの理論解析を提案する。
最適化過程の不安定性は、しばしば損失ランドスケープの非単調性によって引き起こされるものであり、非拡張作用素の理論を活用することによって線型性がいかに役立つかを示す。
論文 参考訳(メタデータ) (2023-10-20T12:45:12Z) - Robust Implicit Regularization via Weight Normalization [5.37610807422229]
重み正規化は、重みが実質的に大規模であっても持続する頑健なバイアスを可能にすることを示す。
実験により, 暗黙バイアスの収束速度とロバスト性の両方の利得は, 重み正規化を用いて劇的に改善されることが示唆された。
論文 参考訳(メタデータ) (2023-05-09T13:38:55Z) - Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse
Problems [64.29491112653905]
本稿では, 拡散サンプリング法とクリロフ部分空間法を相乗的に組み合わせた, 新規で効率的な拡散サンプリング手法を提案する。
具体的には、ツイーディの公式による分母化標本における接空間がクリロフ部分空間を成すならば、その分母化データによるCGは、接空間におけるデータの整合性更新を確実に維持する。
提案手法は,従来の最先端手法よりも80倍以上高速な推論時間を実現する。
論文 参考訳(メタデータ) (2023-03-10T07:42:49Z) - Towards More Robust Interpretation via Local Gradient Alignment [37.464250451280336]
任意の非負の同質ニューラルネットワークに対して、勾配に対する単純な$ell$-robust criterionは、テクスティノ正規化不変量であることを示す。
我々は,局所勾配の整合性を両立させるために,$ell$とcosine distance-based criteriaを正則化項として組み合わせることを提案する。
我々は,CIFAR-10 と ImageNet-100 でトレーニングしたモデルにより,より堅牢な解釈が得られたことを実験的に示す。
論文 参考訳(メタデータ) (2022-11-29T03:38:28Z) - Gradient Backpropagation Through Combinatorial Algorithms: Identity with
Projection Works [20.324159725851235]
ゼロあるいは未定義の解法に対する意味のある置き換えは、効果的な勾配に基づく学習に不可欠である。
本稿では, 離散解空間の幾何学を応用して, 後方パス上の負の同一性として処理する原理的手法を提案する。
論文 参考訳(メタデータ) (2022-05-30T16:17:09Z) - Deep Shells: Unsupervised Shape Correspondence with Optimal Transport [52.646396621449]
本稿では,3次元形状対応のための教師なし学習手法を提案する。
提案手法は,複数のデータセット上での最先端技術よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-10-28T22:24:07Z) - Better Patch Stitching for Parametric Surface Reconstruction [100.55842629739574]
ローカルマッピングのグローバルな一貫性を明示的に促進するアプローチを導入する。
第一項は表面の正規性を利用しており、個々の写像内および全体にわたって推定された場合、局所的に一貫した状態を保つことを要求する。
第2項はさらに、新しい縫合誤差を最小化することにより、マッピングの空間構成を改善する。
論文 参考訳(メタデータ) (2020-10-14T12:37:57Z) - Neural Subdivision [58.97214948753937]
本稿では,データ駆動型粗粒度モデリングの新しいフレームワークであるNeural Subdivisionを紹介する。
すべてのローカルメッシュパッチで同じネットワーク重みのセットを最適化するため、特定の入力メッシュや固定属、カテゴリに制約されないアーキテクチャを提供します。
単一の高分解能メッシュでトレーニングしても,本手法は新規な形状に対して合理的な区分を生成する。
論文 参考訳(メタデータ) (2020-05-04T20:03:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。