論文の概要: Dynamic Conditional Optimal Transport through Simulation-Free Flows
- arxiv url: http://arxiv.org/abs/2404.04240v1
- Date: Fri, 5 Apr 2024 17:41:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-08 15:26:09.639667
- Title: Dynamic Conditional Optimal Transport through Simulation-Free Flows
- Title(参考訳): シミュレーションフリー流れによる動的条件最適輸送
- Authors: Gavin Kerrigan, Giosue Migliorini, Padhraic Smyth,
- Abstract要約: 我々は条件最適輸送(COT)の幾何学を研究し、ベナモ・ブレンニエ理論を一般化する動的定式化を証明した。
提案手法は,任意のソース分布と指定されたターゲット分布を三角COT計画により結合する。
我々は,このCOT計画によって誘導される測地線経路を近似することにより,条件付き生成モデルを訓練するためのフローマッチングの枠組みを構築した。
- 参考スコア(独自算出の注目度): 12.976042923229466
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the geometry of conditional optimal transport (COT) and prove a dynamical formulation which generalizes the Benamou-Brenier Theorem. With these tools, we propose a simulation-free flow-based method for conditional generative modeling. Our method couples an arbitrary source distribution to a specified target distribution through a triangular COT plan. We build on the framework of flow matching to train a conditional generative model by approximating the geodesic path of measures induced by this COT plan. Our theory and methods are applicable in the infinite-dimensional setting, making them well suited for inverse problems. Empirically, we demonstrate our proposed method on two image-to-image translation tasks and an infinite-dimensional Bayesian inverse problem.
- Abstract(参考訳): 我々は条件最適輸送(COT)の幾何学を研究し、ベナモ・ブレニエ定理を一般化する動的定式化を証明した。
これらのツールを用いて,条件付き生成モデリングのためのシミュレーション不要なフローベース手法を提案する。
提案手法は,任意のソース分布と指定されたターゲット分布を三角COT計画により結合する。
我々は,このCOT計画によって誘導される測地線経路を近似することにより,条件付き生成モデルを訓練するためのフローマッチングの枠組みを構築した。
我々の理論と手法は無限次元の設定に適用でき、逆問題には適している。
実験により,2つの画像間翻訳タスクと無限次元ベイズ逆問題に対する提案手法を実証した。
関連論文リスト
- Metric Flow Matching for Smooth Interpolations on the Data Manifold [40.24392451848883]
Metric Flow Matching (MFM) は条件付きフローマッチングのための新しいシミュレーションフリーフレームワークである。
我々は,MFMを条件付き経路のフレームワークとして提案し,ソース分布をターゲット分布に変換する。
我々は、LiDARナビゲーション、未ペア画像翻訳、セルラーダイナミクスのモデリングなど、一連の課題でFMをテストする。
論文 参考訳(メタデータ) (2024-05-23T16:48:06Z) - Constrained Synthesis with Projected Diffusion Models [47.56192362295252]
本稿では, 制約や物理原理の遵守を満足し, 証明する上で, 生成拡散プロセスへのアプローチを紹介する。
提案手法は, 従来の生成拡散過程を制約分布問題として再キャストし, 制約の順守を保証する。
論文 参考訳(メタデータ) (2024-02-05T22:18:16Z) - Bayesian Conditional Diffusion Models for Versatile Spatiotemporal
Turbulence Generation [13.278744447861289]
本稿では,乱流発生の確率的拡散モデルに基づく新しい生成フレームワークを提案する。
提案手法の特長は, 自己回帰に基づく条件抽出に基づく長寿命流れ列生成法である。
数値解析実験により, フレームワークの多目的乱流発生能力を実証した。
論文 参考訳(メタデータ) (2023-11-14T04:08:14Z) - Geometric Neural Diffusion Processes [55.891428654434634]
拡散モデルの枠組みを拡張して、無限次元モデリングに一連の幾何学的先行を組み込む。
これらの条件で、生成関数モデルが同じ対称性を持つことを示す。
論文 参考訳(メタデータ) (2023-07-11T16:51:38Z) - A generative flow for conditional sampling via optimal transport [1.0486135378491266]
本研究は、参照サンプルを対象に反復的にマッピングする非パラメトリック生成モデルを提案する。
このモデルは、対象分布の条件を特徴付けるためにコンポーネントが示されるブロック三角形輸送マップを使用する。
これらのマップは、L2$コスト関数を重み付けした最適輸送問題の解法から生じ、条件付きサンプリングのための[Trigila and Tabak, 2016]におけるデータ駆動アプローチを拡張した。
論文 参考訳(メタデータ) (2023-07-09T05:36:26Z) - Flow Matching on General Geometries [43.252817099263744]
本稿では,多様体上の連続正規化フローをトレーニングするための,単純かつ強力なフレームワークを提案する。
単純な測地ではシミュレーションが不要であり、発散を必要としないことを示し、その対象ベクトル場を閉形式で計算する。
本手法は,多くの実世界の非ユークリッドデータセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2023-02-07T18:21:24Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
提案アルゴリズムは有限状態隠れマルコフモデルに対する分散ベイズフィルタタスクである。
逐次状態推定や、動的環境下でのソーシャルネットワーク上での意見形成のモデル化に使用できる。
論文 参考訳(メタデータ) (2022-12-05T19:40:17Z) - Gauge-equivariant flow models for sampling in lattice field theories
with pseudofermions [51.52945471576731]
本研究は,フェルミオン行列式の推定器として擬フェルミオンを用いたフェルミオン格子場理論におけるフローベースサンプリングのためのゲージ不変アーキテクチャを提案する。
これは最先端の格子場理論計算におけるデフォルトのアプローチであり、QCDのような理論へのフローモデルの実践的応用に欠かせない。
論文 参考訳(メタデータ) (2022-07-18T21:13:34Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
最適輸送流(MIOFlow)を補間するマニフォールド補間法を提案する。
MIOFlowは、散発的なタイムポイントで撮影された静的スナップショットサンプルから、連続的な人口動態を学習する。
本手法は, 胚体分化および急性骨髄性白血病の治療から得られたscRNA-seqデータとともに, 分岐とマージによるシミュレーションデータについて検討した。
論文 参考訳(メタデータ) (2022-06-29T22:19:03Z) - Conditional Sampling with Monotone GANs: from Generative Models to
Likelihood-Free Inference [4.913013713982677]
ブロック三角トランスポートマップを用いた確率測定の条件付きサンプリングのための新しいフレームワークを提案する。
バナッハ空間におけるブロック三角輸送の理論的基礎を開発する。
次に, 単調生成逆数ネットワークと呼ばれる計算手法を導入し, 適切なブロック三角形写像を学習する。
論文 参考訳(メタデータ) (2020-06-11T19:15:43Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
学習エネルギーベースモデル(EBM)の勾配流を最適化する新しい数値スキームを提案する。
フォッカー・プランク方程式から大域相対エントロピーの2階ワッサーシュタイン勾配流を導出する。
既存のスキームと比較して、ワッサーシュタイン勾配流は実データ密度を近似するより滑らかで近似的な数値スキームである。
論文 参考訳(メタデータ) (2019-10-31T02:26:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。