Comparative Study of Quantum-Circuit Scalability in a Financial Problem
- URL: http://arxiv.org/abs/2404.04911v1
- Date: Sun, 7 Apr 2024 10:39:33 GMT
- Title: Comparative Study of Quantum-Circuit Scalability in a Financial Problem
- Authors: Jaewoong Heo, Moonjoo Lee,
- Abstract summary: This study examines the number of two-qubit gates in the superconducting circuit and ion-trap quantum system.
The ion-trap system exhibits a two to three factor reduction in the number of required two-qubit gates when compared to the superconducting circuit system.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computer is extensively used in solving financial problems. Quantum amplitude estimation, an algorithm that aims to estimate the amplitude of a given quantum state, can be utilized to determine the expectation value of bonds as the logic introduced in quantum risk analysis. As the number of the evaluation qubit increases, the more accurate the precise the outcome expectation value is. This augmentation in qubits, however, also leads to a varied escalation in circuit complexity, contingent upon the type of quantum computing device. By analyzing the number of two-qubit gates in the superconducting circuit and ion-trap quantum system, this study examines that the native gates and connectivity nature of the ion-trap system lead to less complicated quantum circuits. Across a range of experiments conducted with one to nineteen qubits, the examination reveals that the ion-trap system exhibits a two to three factor reduction in the number of required two-qubit gates when compared to the superconducting circuit system.
Related papers
- Learning the expressibility of quantum circuit ansatz using transformer [5.368973814856243]
We propose using a transformer model to predict the expressibility of quantum circuit ansatze.
This research can enhance the understanding of the expressibility of quantum circuit ansatze and advance quantum architecture search algorithms.
arXiv Detail & Related papers (2024-05-29T07:34:07Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Trade-off between Noise and Banding in a Quantum Adder with Qudits [0.0]
Quantum addition based on the quantum Fourier transform can be an integral part of a quantum circuit.
We analytically prove an upper bound on the number of the controlled rotation gates required to accomplish the quantum addition up to an arbitrary defect.
We demonstrate that utilizing magnetic fields to prepare an initial state that evolves according to a one-dimensional spin chain can be a potential technique to implement quantum addition circuits in many-body systems.
arXiv Detail & Related papers (2023-10-17T18:22:23Z) - Quantum benefit of the quantum equation of motion for the strongly
coupled many-body problem [0.0]
The quantum equation of motion (qEOM) is a hybrid quantum-classical algorithm for computing excitation properties of a fermionic many-body system.
We demonstrate explicitly that the qEOM exhibits a quantum benefit due to the independence of the number of required quantum measurements.
arXiv Detail & Related papers (2023-09-18T22:10:26Z) - Universal cost bound of quantum error mitigation based on quantum
estimation theory [0.0]
We present a unified approach to analyzing the cost of various quantum error mitigation methods on the basis of quantum estimation theory.
We derive for a generic layered quantum circuit under a wide class of Markovian noise that, unbiased estimation of an observable encounters an exponential growth with the circuit depth in the lower bound on the measurement cost.
Our results contribute to the understanding of the physical limitations of quantum error mitigation and offer a new criterion for evaluating the performance of quantum error mitigation techniques.
arXiv Detail & Related papers (2022-08-19T15:04:36Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.