論文の概要: Stochastic Online Optimization for Cyber-Physical and Robotic Systems
- arxiv url: http://arxiv.org/abs/2404.05318v1
- Date: Mon, 8 Apr 2024 09:08:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 15:04:06.747902
- Title: Stochastic Online Optimization for Cyber-Physical and Robotic Systems
- Title(参考訳): サイバー物理・ロボットシステムのための確率的オンライン最適化
- Authors: Hao Ma, Melanie Zeilinger, Michael Muehlebach,
- Abstract要約: 本稿では,サイバー物理・ロボットシステムの文脈におけるプログラミング問題の解決のための新しいオンラインフレームワークを提案する。
我々の問題定式化制約は、一般に連続状態とアクション空間が非線形であるサイバー物理システムの進化をモデル化する。
我々は, 力学の粗い推定でも, アルゴリズムの収束性を大幅に向上させることができることを示した。
- 参考スコア(独自算出の注目度): 9.392372266209103
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel gradient-based online optimization framework for solving stochastic programming problems that frequently arise in the context of cyber-physical and robotic systems. Our problem formulation accommodates constraints that model the evolution of a cyber-physical system, which has, in general, a continuous state and action space, is nonlinear, and where the state is only partially observed. We also incorporate an approximate model of the dynamics as prior knowledge into the learning process and show that even rough estimates of the dynamics can significantly improve the convergence of our algorithms. Our online optimization framework encompasses both gradient descent and quasi-Newton methods, and we provide a unified convergence analysis of our algorithms in a non-convex setting. We also characterize the impact of modeling errors in the system dynamics on the convergence rate of the algorithms. Finally, we evaluate our algorithms in simulations of a flexible beam, a four-legged walking robot, and in real-world experiments with a ping-pong playing robot.
- Abstract(参考訳): 本稿では,サイバー物理システムやロボットシステムの文脈で頻繁に発生する確率的プログラミング問題を解決するための,勾配に基づく新しいオンライン最適化フレームワークを提案する。
我々の問題定式化は、一般に連続状態と行動空間を持つサイバー物理システムの進化をモデル化する制約に適合し、状態が部分的にのみ観察される場合にのみ非線形である。
また、学習過程に事前知識としてダイナミクスの近似モデルを導入し、ダイナミックスの粗い推定でさえアルゴリズムの収束を著しく改善できることを示す。
我々のオンライン最適化フレームワークは勾配降下法と準ニュートン法の両方を含み、非凸条件下でのアルゴリズムの統一収束解析を提供する。
また,システム力学における誤差のモデル化がアルゴリズムの収束率に与える影響を特徴付ける。
最後に,4脚歩行ロボットであるフレキシブルビームのシミュレーションや,ピンポン演奏ロボットを用いた実世界実験において,本アルゴリズムの評価を行った。
関連論文リスト
- Adaptive learning of effective dynamics: Adaptive real-time, online
modeling for complex systems [2.6144444305800234]
本稿では,大規模シミュレーションを橋渡しし,適応的に有効な力学を抽出・予測する新しいフレームワークを提案する。
AdaLEDはオートエンコーダを使用して、システムダイナミクスの低次表現と確率的リカレントニューラルネットワーク(RNN)のアンサンブルを遅延時間ステップ時間として識別する。
このフレームワークは、計算解法とサロゲートを交互に組み合わせ、学習力学を加速し、まだ学習されていない力学系を元の解法に残す。
論文 参考訳(メタデータ) (2023-04-04T12:05:51Z) - Online Learning of Wheel Odometry Correction for Mobile Robots with
Attention-based Neural Network [63.8376359764052]
現代のロボットプラットフォームは、人間の横で毎日運用するために、信頼性の高いローカライゼーションシステムを必要としている。
フィルタされた車輪と慣性オドメトリーに基づく単純なポーズ推定アルゴリズムは、急激なキネマティックな変化とホイールスリップの存在下で失敗することが多い。
本稿では,車輪形状補正のための革新的なオンライン学習手法を提案し,ロバストなマルチソースローカライゼーションシステムを提案する。
論文 参考訳(メタデータ) (2023-03-21T10:30:31Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
我々は,内在性雑音障害を緩和し,AIによって強化された数値解法を,データサイズを小さくする訓練について検討する。
まず,教師付き学習における雑音を制御するための自己認識機構の能力を解析し,さらに微分方程式の数値解に付加的な自己認識機構を導入し,簡便かつ有効な数値解法であるAttrを提案する。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Smoothed Online Learning for Prediction in Piecewise Affine Systems [43.64498536409903]
本稿では,最近開発されたスムーズなオンライン学習フレームワークに基づく。
これは、断片的なアフィン系における予測とシミュレーションのための最初のアルゴリズムを提供する。
論文 参考訳(メタデータ) (2023-01-26T15:54:14Z) - Losing momentum in continuous-time stochastic optimisation [62.997667081978825]
近年,運動量に基づくアルゴリズムが特に普及している。
本研究では,運動量を伴う勾配降下の連続時間モデルを提案し,解析する。
我々は、時間とともに運動量を減らす際に、我々のシステムを世界規模のミニミザーに収束させることを示す。
論文 参考訳(メタデータ) (2022-09-08T10:46:05Z) - Dynamic Bayesian Learning and Calibration of Spatiotemporal Mechanistic
System [0.0]
ノイズ観測に基づくメカニカルモデルの完全学習と校正のためのアプローチを開発する。
通常の偏微分方程式と偏微分方程式の分析から生じる問題を解くことで、この柔軟性を実証する。
論文 参考訳(メタデータ) (2022-08-12T23:17:46Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Multiscale Simulations of Complex Systems by Learning their Effective
Dynamics [10.52078600986485]
本稿では,大規模シミュレーションをブリッジし,注文モデルを削減し,実効ダイナミクスを学習するシステムフレームワークを提案する。
LEDは複雑なシステムの正確な予測に新しい強力なモダリティを提供する。
LEDは化学から流体力学に至るまでのシステムに適用でき、計算の労力を最大2桁まで削減できる。
論文 参考訳(メタデータ) (2020-06-24T02:35:51Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
本稿では,情報理論的MPCとエントロピー正規化RLとの新たな理論的関連性を示す。
バイアスモデルを利用したQ-ラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2019-12-31T00:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。