論文の概要: HAMMR: HierArchical MultiModal React agents for generic VQA
- arxiv url: http://arxiv.org/abs/2404.05465v2
- Date: Mon, 14 Oct 2024 13:11:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-15 15:03:56.401188
- Title: HAMMR: HierArchical MultiModal React agents for generic VQA
- Title(参考訳): HAMMR: 汎用VQAのための階層型マルチモーダルReactエージェント
- Authors: Lluis Castrejon, Thomas Mensink, Howard Zhou, Vittorio Ferrari, Andre Araujo, Jasper Uijlings,
- Abstract要約: 計数,空間的推論,OCRに基づく推論,視覚的ポインティング,外部知識など,様々なVQAタスクスイート上でシステムを評価する。
マルチモーダルなReActベースのシステムから始まり、HAMMRエージェントが他の特殊なエージェントを呼び出せるようにすることで、階層的にします。
具体的には、我々の一般的なVQAスイートでは、HAMMRは単純LLM+ツールのアプローチを19.5%上回っている。
- 参考スコア(独自算出の注目度): 27.78721140495953
- License:
- Abstract: Combining Large Language Models (LLMs) with external specialized tools (LLMs+tools) is a recent paradigm to solve multimodal tasks such as Visual Question Answering (VQA). While this approach was demonstrated to work well when optimized and evaluated for each individual benchmark, in practice it is crucial for the next generation of real-world AI systems to handle a broad range of multimodal problems. Therefore we pose the VQA problem from a unified perspective and evaluate a single system on a varied suite of VQA tasks including counting, spatial reasoning, OCR-based reasoning, visual pointing, external knowledge, and more. In this setting, we demonstrate that naively applying the LLM+tools approach using the combined set of all tools leads to poor results. This motivates us to introduce HAMMR: HierArchical MultiModal React. We start from a multimodal ReAct-based system and make it hierarchical by enabling our HAMMR agents to call upon other specialized agents. This enhances the compositionality of the LLM+tools approach, which we show to be critical for obtaining high accuracy on generic VQA. Concretely, on our generic VQA suite, HAMMR outperforms the naive LLM+tools approach by 19.5%. Additionally, HAMMR achieves state-of-the-art results on this task, outperforming the generic standalone PaLI-X VQA model by 5.0%.
- Abstract(参考訳): 大規模言語モデル(LLMs)と外部専用ツール(LLMs+tools)を組み合わせることは、視覚質問応答(VQA)のようなマルチモーダルタスクを解決するための最近のパラダイムである。
このアプローチは個々のベンチマークに対して最適化され評価された時にうまく機能することが実証されたが、現実には、次世代の現実世界のAIシステムが幅広いマルチモーダル問題に対処することが不可欠である。
したがって、統一的な視点からVQA問題を提起し、カウント、空間的推論、OCRに基づく推論、視覚的ポインティング、外部知識などを含む様々なVQAタスクのスイート上で単一のシステムを評価する。
そこで本研究では,LLM+tools アプローチを汎用的に適用することで,全てのツールの組み合わせが不十分な結果をもたらすことを実証する。
これはHAMMR: HierArchical MultiModal Reactの導入を動機付けています。
マルチモーダルなReActベースのシステムから始まり、HAMMRエージェントが他の特殊なエージェントを呼び出せるようにすることで、階層的にします。
これにより LLM+tools アプローチの合成性が向上し, 汎用VQA の精度向上に寄与することが示唆された。
具体的には、我々の一般的なVQAスイートでは、HAMMRは単純LLM+ツールのアプローチを19.5%上回っている。
さらに、HAMMRは、このタスクにおける最先端の結果を達成し、一般的なスタンドアロンのPaLI-X VQAモデルを5.0%上回った。
関連論文リスト
- MM-R$^3$: On (In-)Consistency of Multi-modal Large Language Models (MLLMs) [26.475993408532304]
本研究では,MLLMモデルが意味論的に類似したクエリに対して,意味論的に類似あるいは同一の応答を生成する能力について検討する。
本稿では,SoTA MLLMの一貫性と精度の観点から,MM-R$3$ベンチマークを提案する。
我々の分析では、一貫性が必ずしも精度と一致していないことを示し、高い精度のモデルが必ずしも一致しているとは限らないことを示し、その逆も示している。
論文 参考訳(メタデータ) (2024-10-07T06:36:55Z) - VisualAgentBench: Towards Large Multimodal Models as Visual Foundation Agents [50.12414817737912]
大規模マルチモーダルモデル(LMM)は、人工知能の新たな時代を迎え、言語と視覚の融合によって、高い能力を持つVisual Foundation Agentを形成する。
既存のベンチマークでは、複雑な実世界の環境でのLMMの可能性を十分に証明できない。
VisualAgentBench (VAB) は、視覚基礎エージェントとしてLMMを訓練し評価するための先駆的なベンチマークである。
論文 参考訳(メタデータ) (2024-08-12T17:44:17Z) - RAVEN: Multitask Retrieval Augmented Vision-Language Learning [5.1583788731239455]
世界中の知識をエンコードする大規模言語モデルのスケーリングは持続不可能であり、リソースバリアが悪化している。
Retrieval-Augmented Generation (RAG) は潜在的な解決策を示すが、その視覚言語モデル(VLM)への応用は検討中である。
本稿では,効率的なタスク特化微調整により,ベースVLMを強化した検索拡張VLMフレームワークであるRAVENを紹介する。
論文 参考訳(メタデータ) (2024-06-27T13:08:35Z) - Multi-LLM QA with Embodied Exploration [55.581423861790945]
未知環境における質問応答におけるマルチエンボディードLEMエクスプローラ(MELE)の利用について検討する。
複数のLSMベースのエージェントが独立して家庭用環境に関する質問を探索し、回答する。
各問合せに対して1つの最終回答を生成するために,異なるアグリゲーション手法を解析する。
論文 参考訳(メタデータ) (2024-06-16T12:46:40Z) - Multi-Agent VQA: Exploring Multi-Agent Foundation Models in Zero-Shot Visual Question Answering [48.7363941445826]
本稿では,オブジェクト検出とカウントにおける基礎モデルの限界を克服するために,Multi-Agent VQAという適応型マルチエージェントシステムを提案する。
ゼロショットシナリオで予備実験結果を示し、いくつかの障害事例を強調し、今後の研究の方向性を示す。
論文 参考訳(メタデータ) (2024-03-21T18:57:25Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
大規模言語モデル(LLM)エージェントはスタンドアロンのLLMの機能を大幅に拡張する。
本稿では、上記の機能をプランナー、呼び出し元、要約器に分解する新しい手法を提案する。
このモジュール化されたフレームワークは、個々の更新と、それぞれの機能を構築するための小さなLLMの潜在的な使用を容易にする。
論文 参考訳(メタデータ) (2024-01-14T16:17:07Z) - Towards Top-Down Reasoning: An Explainable Multi-Agent Approach for Visual Question Answering [45.88079503965459]
本稿では,視覚言語モデル(VLM)の能力を高めるために,LLM(Large Language Models)の拡張的知識を活用することで,新しいマルチエージェントコラボレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2023-11-29T03:10:42Z) - Multimodal Question Answering for Unified Information Extraction [15.798187192290746]
マルチモーダル情報抽出は、構造化されていないマルチメディアコンテンツから構造化された情報を抽出することを目的としている。
現在のMIEモデルはタスク固有でデータ集約である。
3つのMIEタスクを統合するための新しいマルチモーダル質問応答(MQA)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-04T17:58:05Z) - MM-Vet: Evaluating Large Multimodal Models for Integrated Capabilities [159.9847317300497]
複雑なマルチモーダルタスクにおける大規模マルチモーダルモデル(LMM)を評価する評価ベンチマークであるMM-Vetを提案する。
近年のLMMは、黒板に書かれた数学の問題を解くこと、ニュース画像の出来事や有名人を推論すること、視覚的ジョークを説明することなど、様々な興味深い能力を示している。
論文 参考訳(メタデータ) (2023-08-04T17:59:47Z) - Multi-Agent Reinforcement Learning for Microprocessor Design Space
Exploration [71.95914457415624]
マイクロプロセッサアーキテクトは、高性能でエネルギー効率の追求において、ドメイン固有のカスタマイズにますます頼っている。
この問題に対処するために,Multi-Agent RL (MARL) を利用した別の定式化を提案する。
評価の結果,MARLの定式化は単エージェントRLのベースラインよりも一貫して優れていた。
論文 参考訳(メタデータ) (2022-11-29T17:10:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。