論文の概要: Neural networks can be FLOP-efficient integrators of 1D oscillatory integrands
- arxiv url: http://arxiv.org/abs/2404.05938v1
- Date: Tue, 9 Apr 2024 01:43:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 16:18:17.334464
- Title: Neural networks can be FLOP-efficient integrators of 1D oscillatory integrands
- Title(参考訳): ニューラルネットワークは1次元振動積分器のFLOP効率積分器となり得る
- Authors: Anshuman Sinha, Spencer H. Bryngelson,
- Abstract要約: 我々は、高振動1D関数の積分を計算するためにフィードフォワードニューラルネットワークを訓練する。
隠蔽層5層のフィードフォワードネットワークは,0.001の相対精度で良好であることがわかった。
- 参考スコア(独自算出の注目度): 1.1510009152620668
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We demonstrate that neural networks can be FLOP-efficient integrators of one-dimensional oscillatory integrands. We train a feed-forward neural network to compute integrals of highly oscillatory 1D functions. The training set is a parametric combination of functions with varying characters and oscillatory behavior degrees. Numerical examples show that these networks are FLOP-efficient for sufficiently oscillatory integrands with an average FLOP gain of 1000 FLOPs. The network calculates oscillatory integrals better than traditional quadrature methods under the same computational budget or number of floating point operations. We find that feed-forward networks of 5 hidden layers are satisfactory for a relative accuracy of 0.001. The computational burden of inference of the neural network is relatively small, even compared to inner-product pattern quadrature rules. We postulate that our result follows from learning latent patterns in the oscillatory integrands that are otherwise opaque to traditional numerical integrators.
- Abstract(参考訳): ニューラルネットワークは1次元振動積分器のFLOP効率インテグレータであることを示す。
我々は、高振動1D関数の積分を計算するためにフィードフォワードニューラルネットワークを訓練する。
トレーニングセットは、様々な文字と振動行動の度合いを持つ関数のパラメトリックな組み合わせである。
数値的な例では、これらのネットワークは十分な振動インテグレードに対してFLOP効率が高く、平均的なFLOP利得は1000FLOPである。
ネットワークは、同じ計算予算や浮動小数点演算数の下で、従来の二次法よりも優れた振動積分を計算する。
隠蔽層5層のフィードフォワードネットワークは,0.001の相対精度で良好であることがわかった。
ニューラルネットワークの推論の計算負担は、内積パターンの二次規則と比較しても比較的小さい。
従来の数値積分器では不透明な振動積分器の潜在パターンを学習した結果を仮定する。
関連論文リスト
- Deep Learning without Global Optimization by Random Fourier Neural Networks [0.0]
本稿では、ランダムな複雑な指数関数活性化関数を利用する様々なディープニューラルネットワークのための新しいトレーニングアルゴリズムを提案する。
提案手法では,マルコフ連鎖モンテカルロサンプリング法を用いてネットワーク層を反復的に訓練する。
複雑な指数的活性化関数を持つ残留ネットワークの理論的近似速度を一貫して達成する。
論文 参考訳(メタデータ) (2024-07-16T16:23:40Z) - Fixed Integral Neural Networks [2.2118683064997273]
学習した関数の積分を$f$で表す方法を提案する。
これにより、ニューラルネットワークの正確な積分を計算し、制約されたニューラルネットワークをパラメータ化することができる。
また、多くのアプリケーションに必要な条件である正の$f$を制約する手法も導入する。
論文 参考訳(メタデータ) (2023-07-26T18:16:43Z) - Sampling weights of deep neural networks [1.2370077627846041]
完全に接続されたニューラルネットワークの重みとバイアスに対して,効率的なサンプリングアルゴリズムと組み合わせた確率分布を導入する。
教師付き学習環境では、内部ネットワークパラメータの反復最適化や勾配計算は不要である。
サンプルネットワークが普遍近似器であることを証明する。
論文 参考訳(メタデータ) (2023-06-29T10:13:36Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Simple initialization and parametrization of sinusoidal networks via
their kernel bandwidth [92.25666446274188]
従来の活性化機能を持つネットワークの代替として、活性化を伴う正弦波ニューラルネットワークが提案されている。
まず,このような正弦波ニューラルネットワークの簡易版を提案する。
次に、ニューラルタンジェントカーネルの観点からこれらのネットワークの挙動を分析し、そのカーネルが調整可能な帯域幅を持つ低域フィルタを近似することを実証する。
論文 参考訳(メタデータ) (2022-11-26T07:41:48Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
本稿では,暗黙的ニューラルネットワークのトレーニングとロバスト性検証のための理論的および計算的枠組みを提案する。
組込みネットワークを導入し、組込みネットワークを用いて、元のネットワークの到達可能な集合の超近似として$ell_infty$-normボックスを提供することを示す。
MNISTデータセット上で暗黙的なニューラルネットワークをトレーニングするためにアルゴリズムを適用し、我々のモデルの堅牢性と、文献における既存のアプローチを通じてトレーニングされたモデルを比較する。
論文 参考訳(メタデータ) (2022-08-08T03:13:24Z) - Factorized Fourier Neural Operators [77.47313102926017]
Factorized Fourier Neural Operator (F-FNO) は偏微分方程式をシミュレートする学習法である。
我々は,数値解法よりも桁違いに高速に動作しながら,誤差率2%を維持していることを示す。
論文 参考訳(メタデータ) (2021-11-27T03:34:13Z) - Reachability analysis of neural networks using mixed monotonicity [0.0]
本稿では,入力不確実性の条件下でのフィードフォワードニューラルネットワークの出力集合の過度近似を計算するための新しい到達可能性解析ツールを提案する。
提案手法は、力学系の到達可能性解析のための既存の混合単調性法をニューラルネットワークに適用する。
論文 参考訳(メタデータ) (2021-11-15T11:35:18Z) - Efficient and Robust Mixed-Integer Optimization Methods for Training
Binarized Deep Neural Networks [0.07614628596146598]
二元活性化関数と連続または整数重み付きディープニューラルネットワーク(BDNN)について検討する。
BDNNは、古典的な混合整数計画解法により、大域的最適性に解けるような、有界な重み付き混合整数線形プログラムとして再構成可能であることを示す。
トレーニング中にBDNNの堅牢性を強制するロバストモデルが初めて提示される。
論文 参考訳(メタデータ) (2021-10-21T18:02:58Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - Neural Control Variates [71.42768823631918]
ニューラルネットワークの集合が、積分のよい近似を見つけるという課題に直面していることを示す。
理論的に最適な分散最小化損失関数を導出し、実際に安定したオンライントレーニングを行うための代替の複合損失を提案する。
具体的には、学習した光場近似が高次バウンスに十分な品質であることを示し、誤差補正を省略し、無視可能な可視バイアスのコストでノイズを劇的に低減できることを示した。
論文 参考訳(メタデータ) (2020-06-02T11:17:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。