論文の概要: Dynamic Deep Learning Based Super-Resolution For The Shallow Water Equations
- arxiv url: http://arxiv.org/abs/2404.06400v1
- Date: Tue, 9 Apr 2024 15:46:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 14:11:18.449052
- Title: Dynamic Deep Learning Based Super-Resolution For The Shallow Water Equations
- Title(参考訳): 動的深層学習に基づく浅水方程式の超解法
- Authors: Maximilian Witte, Fabricio Rodrigues Lapolli, Philip Freese, Sebastian Götschel, Daniel Ruprecht, Peter Korn, Christopher Kadow,
- Abstract要約: U-net型ニューラルネットワークによって頻繁に修正される20km分解能のシミュレーションは、10km分解能のシミュレーションの離散化誤差を達成できることを実証した。
このネットワークは、元々イメージベースの後処理の超解像のために開発されたもので、両方のメッシュ上のソリューションの違いを計算するために訓練されている。
- 参考スコア(独自算出の注目度): 0.4188114563181614
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Using the nonlinear shallow water equations as benchmark, we demonstrate that a simulation with the ICON-O ocean model with a 20km resolution that is frequently corrected by a U-net-type neural network can achieve discretization errors of a simulation with 10km resolution. The network, originally developed for image-based super-resolution in post-processing, is trained to compute the difference between solutions on both meshes and is used to correct the coarse mesh every 12h. Our setup is the Galewsky test case, modeling transition of a barotropic instability into turbulent flow. We show that the ML-corrected coarse resolution run correctly maintains a balance flow and captures the transition to turbulence in line with the higher resolution simulation. After 8 day of simulation, the $L_2$-error of the corrected run is similar to a simulation run on the finer mesh. While mass is conserved in the corrected runs, we observe some spurious generation of kinetic energy.
- Abstract(参考訳): 非線形浅水方程式をベンチマークとして、U-net型ニューラルネットワークによって頻繁に修正される20km分解能のICON-O海洋モデルを用いたシミュレーションが、10km分解能のシミュレーションの離散化誤差を達成できることを実証した。
このネットワークは元々、イメージベースのポストプロセッシングのために開発されたもので、両方のメッシュ上のソリューションの違いを計算するために訓練され、12時間毎に粗いメッシュを修正するために使用される。
我々の設定はガレフスキーテストケースであり、バロトロピック不安定性から乱流への遷移をモデル化する。
ML補正された粗い分解能はバランスフローを正しく維持し,高分解能シミュレーションに従って乱流への遷移を捕捉することを示す。
8日間のシミュレーションの後、修正された実行の$L_2$-errorは、より微細なメッシュ上で実行されるシミュレーションに似ている。
質量は補正されたランで保存されるが、運動エネルギーの急激な生成を観測する。
関連論文リスト
- Redefining Super-Resolution: Fine-mesh PDE predictions without classical
simulations [0.0]
PDEに基づく問題に適した超解像の新たな定義を提案する。
我々は、粗いグリッドシミュレーションデータを入力として使用し、詳細なグリッドシミュレーション結果を予測する。
本手法は,従来のシミュレーションを通したファイン・メッシュ・ソリューションの生成を可能にする。
論文 参考訳(メタデータ) (2023-11-16T10:13:09Z) - Simulation-free Schr\"odinger bridges via score and flow matching [89.4231207928885]
シミュレーションフリースコアとフローマッチング([SF]$2$M)を提案する。
本手法は,拡散モデルのトレーニングに使用するスコアマッチング損失と,連続流のトレーニングに使用されるフローマッチング損失の両方を一般化する。
特に、[SF]$2$Mは、高次元の細胞動態を正確にモデル化し、既知の遺伝子制御ネットワークをシミュレートする最初の方法である。
論文 参考訳(メタデータ) (2023-07-07T15:42:35Z) - Near-realtime Facial Animation by Deep 3D Simulation Super-Resolution [7.14576106770047]
本稿では,低コストでリアルタイムな物理シミュレーションによって生み出す顔のパフォーマンスを効率よく,現実的に向上させるニューラルネットワークに基づくシミュレーションフレームワークを提案する。
顔のアニメーションをこのようなシミュレーション領域の例に用いて,2つのシミュレータで同じ筋の運動制御と骨格のポーズを単純にダイヤルすることで,この意味の一致を創り出すことができる。
提案するニューラルネットワーク超解像フレームワークは,このトレーニングセットから未確認表現を一般化し,リアルタイム変種における解像度の制限やコスト削減近似による2つのシミュレーション間の不一致をモデル化するための補償を行うとともに,意味記述子やパラメータを必要としない。
論文 参考訳(メタデータ) (2023-05-05T00:09:24Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
完全深層学習に基づくサロゲートモデルとして,LAMP(Learning Controllable Adaptive Simulation for Multi- resolution Physics)を導入した。
LAMPは、前方進化を学習するためのグラフニューラルネットワーク(GNN)と、空間的洗練と粗大化のポリシーを学ぶためのGNNベースのアクター批判で構成されている。
我々は,LAMPが最先端のディープラーニングサロゲートモデルより優れており,長期予測誤差を改善するために,適応的なトレードオフ計算が可能であることを実証した。
論文 参考訳(メタデータ) (2023-05-01T23:20:27Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
地下貯水池の過圧化を避けることは、CO2の沈殿や排水の注入といった用途に欠かせない。
地中における複雑な不均一性のため, 噴射・抽出制御による圧力管理は困難である。
過圧化防止のための流体抽出速度を決定するために、フル物理モデルと機械学習を用いた微分可能プログラミングを用いる。
論文 参考訳(メタデータ) (2022-06-21T20:38:13Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
本研究では3次元地下流体の貯留層シミュレーションを学習するためのハイブリッドグラフネットワークシミュレータ (HGNS) を提案する。
HGNSは、流体の進化をモデル化する地下グラフニューラルネットワーク(SGNN)と、圧力の進化をモデル化する3D-U-Netで構成されている。
産業標準地下フローデータセット(SPE-10)と1100万セルを用いて,HGNSが標準地下シミュレータの18倍の推算時間を短縮できることを実証した。
論文 参考訳(メタデータ) (2022-06-15T17:29:57Z) - Fast Aquatic Swimmer Optimization with Differentiable Projective
Dynamics and Neural Network Hydrodynamic Models [23.480913364381664]
水面移動(Aquatic locomotion)は、生物学者や技術者が関心を持つ古典的な流体構造相互作用(FSI)問題である。
本研究では, 変形可能なスイマーの固体構造に対する2次元数値シミュレーションを組み合わせた, FSI に完全微分可能な新しいハイブリッド手法を提案する。
2次元キャランギフォームスイマーにおけるハイブリッドシミュレータの計算効率と微分性を示す。
論文 参考訳(メタデータ) (2022-03-30T15:21:44Z) - Generic Lithography Modeling with Dual-band Optics-Inspired Neural
Networks [52.200624127512874]
我々は、リソグラフィの基礎となる光学物理を考慮に入れたデュアルバンド光インスパイアされたニューラルネットワーク設計を導入する。
提案手法は, タイルサイズが1nm2/ピクセル解像度で最初に公表された金属/金属層輪郭シミュレーションである。
また,従来のリソグラフィーシミュレータよりも精度1%の精度で85倍の高速化を実現した。
論文 参考訳(メタデータ) (2022-03-12T08:08:50Z) - Machine learning accelerated computational fluid dynamics [9.077691121640333]
二次元乱流のモデリングにエンド・ツー・エンド・ディープ・ラーニングを用いて計算流体力学の近似を改良する。
乱流の直接数値シミュレーションと大規模渦シミュレーションでは,各空間次元の8~10倍の微細分解能を持つベースラインソルバと同程度に精度が高い。
提案手法は,機械学習とハードウェアアクセラレータを応用して,精度や一般化を犠牲にすることなくシミュレーションを改善する方法を示す。
論文 参考訳(メタデータ) (2021-01-28T19:10:00Z) - Using Machine Learning to Augment Coarse-Grid Computational Fluid
Dynamics Simulations [2.7892067588273517]
本研究では,高レイノルズ数での乱流の粗いグリッドシミュレーションにより発生する数値誤差を補正する機械学習(ML)手法を提案する。
提案手法は,高分解能な解軌道を得ることができるML-PDEハイブリッド解法である。
論文 参考訳(メタデータ) (2020-09-30T19:29:21Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。