Exploring Concept Depth: How Large Language Models Acquire Knowledge at Different Layers?
- URL: http://arxiv.org/abs/2404.07066v4
- Date: Tue, 17 Sep 2024 01:37:18 GMT
- Title: Exploring Concept Depth: How Large Language Models Acquire Knowledge at Different Layers?
- Authors: Mingyu Jin, Qinkai Yu, Jingyuan Huang, Qingcheng Zeng, Zhenting Wang, Wenyue Hua, Haiyan Zhao, Kai Mei, Yanda Meng, Kaize Ding, Fan Yang, Mengnan Du, Yongfeng Zhang,
- Abstract summary: Large language models (LLMs) have shown remarkable performances across a wide range of tasks.
However, the mechanisms by which these models encode tasks of varying complexities remain poorly understood.
We introduce the idea of Concept Depth'' to suggest that more complex concepts are typically acquired in deeper layers.
- Score: 57.04803703952721
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have shown remarkable performances across a wide range of tasks. However, the mechanisms by which these models encode tasks of varying complexities remain poorly understood. In this paper, we explore the hypothesis that LLMs process concepts of varying complexities in different layers, introducing the idea of ``Concept Depth'' to suggest that more complex concepts are typically acquired in deeper layers. Specifically, we categorize concepts based on their level of abstraction, defining them in the order of increasing complexity within factual, emotional, and inferential tasks. We conduct extensive probing experiments using layer-wise representations across various LLM families (Gemma, LLaMA, Qwen) on various datasets spanning the three domains of tasks. Our findings reveal that models could efficiently conduct probing for simpler tasks in shallow layers, and more complex tasks typically necessitate deeper layers for accurate understanding. Additionally, we examine how external factors, such as adding noise to the input and quantizing the model weights, might affect layer-wise representations. Our findings suggest that these factors can impede the development of a conceptual understanding of LLMs until deeper layers are explored. We hope that our proposed concept and experimental insights will enhance the understanding of the mechanisms underlying LLMs. Our codes are available at \url{https://github.com/Luckfort/CD}.
Related papers
- Layer by Layer: Uncovering Where Multi-Task Learning Happens in Instruction-Tuned Large Language Models [22.676688441884465]
Fine-tuning pre-trained large language models (LLMs) on a diverse array of tasks has become a common approach for building models.
This study investigates the task-specific information encoded in pre-trained LLMs and the effects of instruction tuning on their representations.
arXiv Detail & Related papers (2024-10-25T23:38:28Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Looking into Black Box Code Language Models [2.5324062203985935]
We use two state-of-the-art codeLMs, Codegen-Mono and Ploycoder, and three widely used programming languages, Java, Go, and Python.
We show concepts of interest can be edited within feed-forward layers without compromising codeLM performance.
arXiv Detail & Related papers (2024-07-05T21:13:41Z) - Hierarchical Deconstruction of LLM Reasoning: A Graph-Based Framework for Analyzing Knowledge Utilization [30.349165483935682]
How large language models (LLMs) use their knowledge for reasoning is not yet well understood.
We develop the DepthQA dataset, deconstructing questions into three depths: (i) recalling conceptual knowledge, (ii) applying procedural knowledge, and (iii) analyzing strategic knowledge.
Distinct patterns of discrepancies are observed across model capacity and possibility of training data memorization.
arXiv Detail & Related papers (2024-06-27T19:29:36Z) - Can Large Language Models Understand DL-Lite Ontologies? An Empirical Study [10.051572826948762]
Large models (LLMs) have shown significant achievements in solving a wide range of tasks.
We empirically analyze the LLMs' capability of understanding Description Logic (DL-Lite)
We find that LLMs understand formal syntax and model-theoretic semantics of concepts and roles.
arXiv Detail & Related papers (2024-06-25T13:16:34Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
We argue that converging visual context acquisition and logical reasoning is pivotal for tackling visual reasoning tasks.
We propose an innovative multimodal CoT framework, termed Cantor, characterized by a perception-decision architecture.
Our experiments demonstrate the efficacy of the proposed framework, showing significant improvements in multimodal CoT performance.
arXiv Detail & Related papers (2024-04-24T17:59:48Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide array of tasks.
The capability to explain in natural language allows LLMs to expand the scale and complexity of patterns that can be given to a human.
These new capabilities raise new challenges, such as hallucinated explanations and immense computational costs.
arXiv Detail & Related papers (2024-01-30T17:38:54Z) - Is Bigger and Deeper Always Better? Probing LLaMA Across Scales and
Layers [73.28459749681879]
This paper focuses on LLaMA, a prominent open-source foundational model in natural language processing.
Instead of assessing LLaMA through its generative output, we design multiple-choice tasks to probe its intrinsic understanding.
We unveil several key and uncommon findings based on the designed probing tasks.
arXiv Detail & Related papers (2023-12-07T14:50:41Z) - Characterizing Large Language Model Geometry Helps Solve Toxicity Detection and Generation [15.77263269398368]
Large Language Models (LLMs) drive current AI breakthroughs.
We shed the light on LLMs inner mechanisms through the lens of geometry.
We derive interpretable geometrical features that can be extracted from any (pre-trained) LLM.
arXiv Detail & Related papers (2023-12-04T06:01:32Z) - Understanding Masked Autoencoders via Hierarchical Latent Variable
Models [109.35382136147349]
Masked autoencoder (MAE) has recently achieved prominent success in a variety of vision tasks.
Despite the emergence of intriguing empirical observations on MAE, a theoretically principled understanding is still lacking.
arXiv Detail & Related papers (2023-06-08T03:00:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.