論文の概要: BAMBOO: a predictive and transferable machine learning force field framework for liquid electrolyte development
- arxiv url: http://arxiv.org/abs/2404.07181v2
- Date: Thu, 11 Apr 2024 17:58:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 12:39:58.679447
- Title: BAMBOO: a predictive and transferable machine learning force field framework for liquid electrolyte development
- Title(参考訳): BAMBOO:液体電解質開発のための予測および伝達可能な機械学習力場フレームワーク
- Authors: Sheng Gong, Yumin Zhang, Zhenliang Mu, Zhichen Pu, Hongyi Wang, Zhiao Yu, Mengyi Chen, Tianze Zheng, Zhi Wang, Lifei Chen, Xiaojie Wu, Shaochen Shi, Weihao Gao, Wen Yan, Liang Xiang,
- Abstract要約: 本稿では,分子動力学(MD)シミュレーションのための新しいフレームワークであるBAMBOOを紹介し,リチウム電池用液体電解質の文脈でその能力を実証する。
BamBOOは密度、粘性、イオン伝導率などの主要な電解質特性を予測するための最先端の精度を示す。
この研究は、一般的な有機液体の性質をシミュレートできる「ユニバーサルMLFF」への道を開くことを目的としている。
- 参考スコア(独自算出の注目度): 11.682763325188525
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Despite the widespread applications of machine learning force field (MLFF) on solids and small molecules, there is a notable gap in applying MLFF to complex liquid electrolytes. In this work, we introduce BAMBOO (ByteDance AI Molecular Simulation Booster), a novel framework for molecular dynamics (MD) simulations, with a demonstration of its capabilities in the context of liquid electrolytes for lithium batteries. We design a physics-inspired graph equivariant transformer architecture as the backbone of BAMBOO to learn from quantum mechanical simulations. Additionally, we pioneer an ensemble knowledge distillation approach and apply it on MLFFs to improve the stability of MD simulations. Finally, we propose the density alignment algorithm to align BAMBOO with experimental measurements. BAMBOO demonstrates state-of-the-art accuracy in predicting key electrolyte properties such as density, viscosity, and ionic conductivity across various solvents and salt combinations. Our current model, trained on more than 15 chemical species, achieves the average density error of 0.01 g/cm$^3$ on various compositions compared with experimental data. Moreover, our model demonstrates transferability to molecules not included in the quantum mechanical dataset. We envision this work as paving the way to a "universal MLFF" capable of simulating properties of common organic liquids.
- Abstract(参考訳): 機械学習力場(MLFF)が固体や小分子に広く応用されているにもかかわらず、複雑な液体電解質にMLFFを適用する際には顕著なギャップがある。
本研究では,分子動力学(MD)シミュレーションのための新しいフレームワークであるBAMBOO(ByteDance AI Molecular Simulation Booster)を紹介する。
我々は、量子力学シミュレーションから学ぶため、BAMBOOのバックボーンとして、物理に着想を得たグラフ同変変変圧器アーキテクチャを設計する。
さらに,本手法をMLFFに適用し,MDシミュレーションの安定性向上を図る。
最後に,BAMBOOを実験値と整合させる密度アライメントアルゴリズムを提案する。
BAMBOOは、密度、粘性、および様々な溶媒と塩の組み合わせにおけるイオン伝導率などの主要な電解質特性を予測するための最先端の精度を示す。
現在のモデルでは15種以上の化学種で訓練し, 各種組成における平均密度誤差0.01g/cm$^3$を実験データと比較した。
さらに,本モデルでは,量子力学的データセットに含まれない分子への転移性を示す。
この研究は、一般的な有機液体の性質をシミュレートできる「ユニバーサルMLFF」への道を開くことを目的としている。
関連論文リスト
- Hydrogen under Pressure as a Benchmark for Machine-Learning Interatomic Potentials [0.0]
機械学習原子間ポテンシャル(MLPs)は、原子系のポテンシャルエネルギー表面の高速でデータ駆動の代理モデルである。
圧力下での水素中の液体-液体相転移の性能を自動的に定量するベンチマークを提案する。
論文 参考訳(メタデータ) (2024-09-20T10:44:40Z) - Multi-task learning for molecular electronic structure approaching coupled-cluster accuracy [9.81014501502049]
金標準CCSD(T)計算をトレーニングデータとして,有機分子の電子構造を統一した機械学習手法を開発した。
炭化水素分子を用いたモデルでは, 計算コストと様々な量子化学特性の予測精度において, 広範に用いられているハイブリッド関数と二重ハイブリッド関数でDFTより優れていた。
論文 参考訳(メタデータ) (2024-05-09T19:51:27Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
薬物発見において、分子動力学(MD)シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合ダイナミクスの正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
従来の数値MDシミュレーションと比較して1K$times$ Speedupを実現することにより,NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - Evaluating the Transferability of Machine-Learned Force Fields for
Material Property Modeling [2.494740426749958]
本稿では,機械学習力場の伝達性を評価するため,より包括的なベンチマークテストを提案する。
我々は、OpenMMパッケージと結合したグラフニューラルネットワーク(GNN)ベースの力場を用いて、ArgonのMDシミュレーションを実行する。
実験結果から, モデルが固体相の挙動を正確に把握できるのは, 固体相の構成がトレーニングデータセットに含まれる場合のみであることがわかった。
論文 参考訳(メタデータ) (2023-01-10T00:25:48Z) - Studying chirality imbalance with quantum algorithms [62.997667081978825]
我々は(1+1)次元ナムブ・ジョナ・ラシニオ(NJL)モデルを用いて、強相互作用物質のキラル相構造とキラル電荷密度を研究する。
量子想像時間進化法 (QITE) を用いて, 格子上の (1+1) 次元NJLモデルを温度$T$, 化学ポテンシャル$mu$, $mu_5$でシミュレートする。
論文 参考訳(メタデータ) (2022-10-06T17:12:33Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
地下貯水池の過圧化を避けることは、CO2の沈殿や排水の注入といった用途に欠かせない。
地中における複雑な不均一性のため, 噴射・抽出制御による圧力管理は困難である。
過圧化防止のための流体抽出速度を決定するために、フル物理モデルと機械学習を用いた微分可能プログラミングを用いる。
論文 参考訳(メタデータ) (2022-06-21T20:38:13Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
本研究の目的は、代替燃料の物理的特性を予測するためのクロージャ方程式として機能する、安価で計算可能な機械学習モデルを構築することである。
これらのモデルは、MDシミュレーションのデータベースや、データ融合-忠実性アプローチによる実験的な測定を用いて訓練することができる。
その結果,MLモデルでは,広範囲の圧力および温度条件の燃料特性を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2021-10-18T14:43:50Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
機械学習力場(MLFF)は正確で、計算的で、データ効率が良く、分子、材料、およびそれらのインターフェースに適用できなければならない。
ここでは、Bravais-Inspired Gradient-Domain Machine Learningアプローチを導入し、わずか10-200原子のトレーニングセットを用いて、信頼性の高い力場を構築する能力を実証する。
論文 参考訳(メタデータ) (2021-06-08T10:14:57Z) - Automated discovery of a robust interatomic potential for aluminum [4.6028828826414925]
機械学習(ML)ベースのポテンシャルは、量子力学(QM)計算の忠実なエミュレーションを、計算コストを大幅に削減することを目的としている。
アクティブラーニング(AL)の原理を用いたデータセット構築のための高度に自動化されたアプローチを提案する。
アルミニウム(ANI-Al)のMLポテンシャル構築によるこのアプローチの実証
転写性を示すために、1.3M原子衝撃シミュレーションを行い、非平衡力学から採取した局所原子環境上でのDFT計算とANI-Al予測がよく一致することを示す。
論文 参考訳(メタデータ) (2020-03-10T19:06:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。