論文の概要: RiskLabs: Predicting Financial Risk Using Large Language Model Based on Multi-Sources Data
- arxiv url: http://arxiv.org/abs/2404.07452v1
- Date: Thu, 11 Apr 2024 03:14:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 15:08:41.567986
- Title: RiskLabs: Predicting Financial Risk Using Large Language Model Based on Multi-Sources Data
- Title(参考訳): RiskLabs:マルチソースデータに基づく大規模言語モデルによる金融リスク予測
- Authors: Yupeng Cao, Zhi Chen, Qingyun Pei, Fabrizio Dimino, Lorenzo Ausiello, Prashant Kumar, K. P. Subbalakshmi, Papa Momar Ndiaye,
- Abstract要約: textbfRiskLabsは,大規模言語モデル(LLM)を利用して財務リスクを分析し,予測する新しいフレームワークである。
提案手法は,Earnings Conference Calls (ECC) の抽出と解析,市場関連時系列データ,ECCリリース日を取り巻くコンテキストニュースデータなど,多段階的なプロセスを含む。
RiskLabsは、マルチモーダルフュージョン技術を使用して、これらのさまざまなデータ特徴を、包括的なマルチタスクの金融リスク予測に適合させる。
- 参考スコア(独自算出の注目度): 8.145265717016718
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of Artificial Intelligence (AI) techniques, particularly large language models (LLMs), in finance has garnered increasing academic attention. Despite progress, existing studies predominantly focus on tasks like financial text summarization, question-answering (Q$\&$A), and stock movement prediction (binary classification), with a notable gap in the application of LLMs for financial risk prediction. Addressing this gap, in this paper, we introduce \textbf{RiskLabs}, a novel framework that leverages LLMs to analyze and predict financial risks. RiskLabs uniquely combines different types of financial data, including textual and vocal information from Earnings Conference Calls (ECCs), market-related time series data, and contextual news data surrounding ECC release dates. Our approach involves a multi-stage process: initially extracting and analyzing ECC data using LLMs, followed by gathering and processing time-series data before the ECC dates to model and understand risk over different timeframes. Using multimodal fusion techniques, RiskLabs amalgamates these varied data features for comprehensive multi-task financial risk prediction. Empirical experiment results demonstrate RiskLab's effectiveness in forecasting both volatility and variance in financial markets. Through comparative experiments, we demonstrate how different data sources contribute to financial risk assessment and discuss the critical role of LLMs in this context. Our findings not only contribute to the AI in finance application but also open new avenues for applying LLMs in financial risk assessment.
- Abstract(参考訳): 金融における人工知能(AI)技術、特に大規模言語モデル(LLM)の統合は、学術的な注目を集めている。
進展にもかかわらず、既存の研究は金融テキスト要約、質問回答(Q$\&$A)、株式移動予測(バイナリ分類)といったタスクに主に焦点を合わせており、金融リスク予測におけるLCMの適用には顕著なギャップがある。
本稿では LLM を利用した金融リスクの分析と予測を行う新しいフレームワークである \textbf{RiskLabs} を紹介する。
RiskLabsは、Earnings Conference Calls(ECCs)のテキストとボーカル情報、市場関連時系列データ、ECCリリース日に関するコンテキストニュースデータなど、さまざまなタイプの金融データを独自に組み合わせている。
LLMを用いてECCデータを抽出・分析し、その後、ECCが異なる時間枠のリスクをモデル化し理解する前に時系列データを収集・処理する。
RiskLabsは、マルチモーダルフュージョン技術を使用して、これらのさまざまなデータ特徴を、包括的なマルチタスクの金融リスク予測に適合させる。
実証実験の結果、金融市場のボラティリティと分散を予測できるリスクラボの有効性が示された。
比較実験を通じて、異なるデータソースが金融リスク評価にどのように貢献するかを実証し、この文脈におけるLLMの重要な役割について議論する。
我々の発見は、金融アプリケーションにおけるAIに貢献するだけでなく、金融リスク評価にLLMを適用するための新たな道を開いた。
関連論文リスト
- Navigating the Risks: A Survey of Security, Privacy, and Ethics Threats in LLM-Based Agents [67.07177243654485]
この調査は、大規模言語モデルに基づくエージェントが直面するさまざまな脅威を収集、分析する。
LLMをベースとしたエージェントの6つの重要な特徴を概説する。
4つの代表エージェントをケーススタディとして選択し,実践的に直面する可能性のあるリスクを分析した。
論文 参考訳(メタデータ) (2024-11-14T15:40:04Z) - Analysis of Financial Risk Behavior Prediction Using Deep Learning and Big Data Algorithms [7.713045399751312]
本稿では,金融リスク予測のためのディープラーニングとビッグデータアルゴリズムの有効性と有効性について検討する。
ディープラーニングベースのビッグデータリスク予測フレームワークを設計し、実際の財務データセット上で実験的に検証する。
論文 参考訳(メタデータ) (2024-10-25T08:52:04Z) - TradExpert: Revolutionizing Trading with Mixture of Expert LLMs [25.243258134817054]
TradeExpertは、専門的な4つのLLMを使用して、専門家(MoE)のアプローチを組み合わせた、新しいフレームワークである。
実験の結果は、すべての取引シナリオにおいて、TradeExpertの優れたパフォーマンスを示しています。
論文 参考訳(メタデータ) (2024-10-16T20:24:16Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
我々はAlphaFinデータセットをリリースし、従来の研究データセット、リアルタイム財務データ、手書きのチェーン・オブ・プリート(CoT)データを組み合わせています。
次に、AlphaFinデータセットを使用して、金融分析タスクを効果的に処理するために、Stock-Chainと呼ばれる最先端の手法をベンチマークします。
論文 参考訳(メタデータ) (2024-03-19T09:45:33Z) - FinBen: A Holistic Financial Benchmark for Large Language Models [75.09474986283394]
FinBenは、24の財務タスクにまたがる36のデータセットを含む、最初の大規模なオープンソース評価ベンチマークである。
FinBenは、幅広いタスクとデータセット、ストックトレーディングの最初の評価、新しいエージェントと検索可能な生成(RAG)の評価、およびテキスト要約、質問応答、株式トレーディングのための3つの新しいオープンソース評価データセットを提供する。
論文 参考訳(メタデータ) (2024-02-20T02:16:16Z) - FinPT: Financial Risk Prediction with Profile Tuning on Pretrained
Foundation Models [32.7825479037623]
FinPTは、金融リスク予測のための新しいアプローチであり、大規模な事前訓練された基礎モデルに基づいてプロファイルチューニングを行う。
FinBenchは、デフォルト、詐欺、チャーンといった金融リスクに関する高品質なデータセットのセットである。
論文 参考訳(メタデータ) (2023-07-22T09:27:05Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIUは、命令データ付き微調整LLaMAに基づく最初の金融大規模言語モデル(LLM)を含む包括的なフレームワークである。
我々はLLaMAを細調整してFinMAを提案する。
我々は、FinMAと既存のLLMを詳細に分析し、重要な財政課題に対処する際の長所と短所を明らかにする。
論文 参考訳(メタデータ) (2023-06-08T14:20:29Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Financial data analysis application via multi-strategy text processing [0.2741266294612776]
本稿では、主に中国A株会社の株価取引データとニュースに焦点を当てる。
本稿では,自然言語処理(NLP)と知識グラフ(KG)技術を用いた金融テキスト処理アプリケーションシナリオの深層学習に向けた取り組みと計画について述べる。
論文 参考訳(メタデータ) (2022-04-25T01:56:36Z) - Gaussian process imputation of multiple financial series [71.08576457371433]
金融指標、株価、為替レートなどの複数の時系列は、市場が潜んでいる状態に依存しているため、強く結びついている。
金融時系列間の関係を多出力ガウスプロセスでモデル化することで学習することに注力する。
論文 参考訳(メタデータ) (2020-02-11T19:18:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。