論文の概要: Statistical learning for constrained functional parameters in infinite-dimensional models
- arxiv url: http://arxiv.org/abs/2404.09847v2
- Date: Fri, 18 Jul 2025 22:19:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:31.63584
- Title: Statistical learning for constrained functional parameters in infinite-dimensional models
- Title(参考訳): 無限次元モデルにおける制約付き機能パラメータの統計的学習
- Authors: Razieh Nabi, Nima S. Hejazi, Mark J. van der Laan, David Benkeser,
- Abstract要約: 無限次元統計モデルにおける等式制約や不等式制約の下で関数値パラメータを推定する枠組みを開発する。
我々は,ラグランジュ型定式化を用いたペナル化集団リスクの最小化法として,この解を特徴付けている。
提案手法の柔軟性と有効性について,様々な例,シミュレーション,実データを用いて実証する。
- 参考スコア(独自算出の注目度): 4.974815773537217
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a general framework for estimating function-valued parameters under equality or inequality constraints in infinite-dimensional statistical models. Such constrained learning problems are common across many areas of statistics and machine learning, where estimated parameters must satisfy structural requirements such as moment restrictions, policy benchmarks, calibration criteria, or fairness considerations. To address these problems, we characterize the solution as the minimizer of a penalized population risk using a Lagrange-type formulation, and analyze it through a statistical functional lens. Central to our approach is a constraint-specific path through the unconstrained parameter space that defines the constrained solutions. For a broad class of constraint-risk pairs, this path admits closed-form expressions and reveals how constraints shape optimal adjustments. When closed forms are unavailable, we derive recursive representations that support tractable estimation. Our results also suggest natural estimators of the constrained parameter, constructed by combining estimates of unconstrained components of the data-generating distribution. Thus, our procedure can be integrated with any statistical learning approach and implemented using standard software. We provide general conditions under which the resulting estimators achieve optimal risk and constraint satisfaction, and we demonstrate the flexibility and effectiveness of the proposed method through various examples, simulations, and real-data applications.
- Abstract(参考訳): 無限次元統計モデルにおける等式制約や不等式制約の下で関数値パラメータを推定するための一般的な枠組みを開発する。
このような制約付き学習問題は統計学や機械学習の分野に共通しており、推定されたパラメータはモーメント制限、ポリシーベンチマーク、校正基準、公平性考慮といった構造的要件を満たす必要がある。
これらの問題に対処するために、ラグランジュ型定式化を用いてペナル化集団リスクを最小化し、統計的機能レンズを用いて解析する。
我々のアプローチの中心は、制約付き解を定義する非制約パラメータ空間を通した制約固有経路である。
幅広い制約リスク対に対して、この経路は閉形式表現を認め、制約がどのように最適な調整を形作るかを明らかにする。
閉形式が利用できない場合、抽出可能な推定をサポートする再帰的表現を導出する。
また,データ生成分布の非制約成分の推定値を組み合わせて構成した制約パラメータの自然推定器についても提案した。
したがって,本手法は任意の統計的学習手法と統合し,標準ソフトウェアを用いて実装することができる。
提案手法の柔軟性と有効性を,様々な例,シミュレーション,実データを用いて示す。
関連論文リスト
- Conformal and kNN Predictive Uncertainty Quantification Algorithms in Metric Spaces [3.637162892228131]
オラクル推定器の有限サンプルカバレッジ保証と高速収束率を提供する共形予測アルゴリズムを開発した。
不整合性の設定では、統計的効率を得るためにこれらの非漸近性保証を強制する。
ランダム応答オブジェクトを含むパーソナライズ・メディカルアプリケーションにおいて,本手法の実用性を実証する。
論文 参考訳(メタデータ) (2025-07-21T15:54:13Z) - A Graphical Global Optimization Framework for Parameter Estimation of Statistical Models with Nonconvex Regularization Functions [0.0]
線形ノルムバウンド制約の問題は、ポートフォリオ最適化、機械学習、機能選択など、さまざまなアプリケーションで発生する。
本稿では,これらの問題をグローバルに解決するための新しいグラフベース手法を提案する。
論文 参考訳(メタデータ) (2025-05-06T18:09:54Z) - Automatic Debiased Machine Learning for Smooth Functionals of Nonparametric M-Estimands [34.30497962430375]
無限次元M-推定関数のスムーズな関数に対する推論を行うために,自動脱バイアス機械学習(autoDML)の統一フレームワークを提案する。
本稿では,1ステップ推定に基づく3つの自動DML推定器,目標最小損失推定,およびシーブ方法を紹介する。
データ駆動型モデル選択では、M-エスティマンドの滑らかな関数に対するモデル近似誤差の新たな分解を導出する。
論文 参考訳(メタデータ) (2025-01-21T03:50:51Z) - Fair Risk Minimization under Causal Path-Specific Effect Constraints [3.0232957374216953]
本稿では,機械学習を用いて最適な予測を推定するためのフレームワークを提案する。
平均二乗誤差とクロスエントロピーリスク基準に基づく制約付き最適化のための閉形式解を導出する。
論文 参考訳(メタデータ) (2024-08-03T02:05:43Z) - Generalization Bounds of Surrogate Policies for Combinatorial Optimization Problems [61.580419063416734]
最近の構造化学習手法のストリームは、様々な最適化問題に対する技術の実践的状態を改善している。
鍵となる考え方は、インスタンスを別々に扱うのではなく、インスタンス上の統計分布を利用することだ。
本稿では,最適化を容易にし,一般化誤差を改善するポリシを摂動することでリスクを円滑にする手法について検討する。
論文 参考訳(メタデータ) (2024-07-24T12:00:30Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - Boosting Inference Efficiency: Unleashing the Power of Parameter-Shared
Pre-trained Language Models [109.06052781040916]
本稿ではパラメータ共有言語モデルの推論効率を向上させる手法を提案する。
また、完全あるいは部分的に共有されたモデルにつながる単純な事前学習手法を提案する。
その結果,本手法が自己回帰的および自己符号化的PLMに与える影響が示された。
論文 参考訳(メタデータ) (2023-10-19T15:13:58Z) - Online Constraint Tightening in Stochastic Model Predictive Control: A
Regression Approach [49.056933332667114]
確率制約付き最適制御問題に対する解析解は存在しない。
制御中の制約強調パラメータをオンラインで学習するためのデータ駆動型アプローチを提案する。
提案手法は, 確率制約を厳密に満たす制約強調パラメータを導出する。
論文 参考訳(メタデータ) (2023-10-04T16:22:02Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
低ランクマルコフ決定プロセスは、関数近似を持つRLに対して単純だが表現力のあるフレームワークを提供する。
既存のアルゴリズムは、(1)計算的に抽出可能であるか、または(2)制限的な統計的仮定に依存している。
提案手法は,低ランクMPPの探索のための最初の実証可能なサンプル効率アルゴリズムである。
論文 参考訳(メタデータ) (2023-07-08T15:41:48Z) - On the Forward Invariance of Neural ODEs [92.07281135902922]
本稿では,ニューラル常微分方程式(ODE)が出力仕様を満たすことを保証するための新しい手法を提案する。
提案手法では,出力仕様を学習システムのパラメータや入力の制約に変換するために,制御障壁関数のクラスを用いる。
論文 参考訳(メタデータ) (2022-10-10T15:18:28Z) - On data-driven chance constraint learning for mixed-integer optimization
problems [0.0]
本稿では,混合整数線形最適化問題に着目したCCL手法を提案する。
CCLは線形化可能な機械学習モデルを使用して、学習変数の条件量子を推定する。
実践者が使用するオープンアクセスソフトウェアが開発されている。
論文 参考訳(メタデータ) (2022-07-08T11:54:39Z) - A Free Lunch with Influence Functions? Improving Neural Network
Estimates with Concepts from Semiparametric Statistics [41.99023989695363]
ニューラルネットワークや機械学習アルゴリズムの改善に使用される半パラメトリック理論の可能性を探る。
本稿では,単一アーキテクチャを用いてアンサンブルの柔軟性と多様性を求めるニューラルネットワーク手法であるMultiNetを提案する。
論文 参考訳(メタデータ) (2022-02-18T09:35:51Z) - Neural Networks for Parameter Estimation in Intractable Models [0.0]
本稿では,最大安定過程からパラメータを推定する方法を示す。
モデルシミュレーションのデータを入力として使用し,統計的パラメータを学習するために深層ニューラルネットワークを訓練する。
論文 参考訳(メタデータ) (2021-07-29T21:59:48Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Estimating Structural Target Functions using Machine Learning and
Influence Functions [103.47897241856603]
統計モデルから特定可能な関数として生じる対象関数の統計的機械学習のための新しい枠組みを提案する。
このフレームワークは問題とモデルに依存しないものであり、応用統計学における幅広い対象パラメータを推定するのに使用できる。
我々は、部分的に観測されていない情報を持つランダム/二重ロバストな問題において、いわゆる粗大化に特に焦点をあてた。
論文 参考訳(メタデータ) (2020-08-14T16:48:29Z) - A Semiparametric Approach to Interpretable Machine Learning [9.87381939016363]
機械学習におけるブラックボックスモデルは、複雑な問題と高次元設定において優れた予測性能を示した。
透明性と解釈可能性の欠如は、重要な意思決定プロセスにおけるそのようなモデルの適用性を制限します。
半パラメトリック統計学のアイデアを用いて予測モデルにおける解釈可能性と性能のトレードオフを行う新しい手法を提案する。
論文 参考訳(メタデータ) (2020-06-08T16:38:15Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
我々は,人口レベルでのアルゴリズムの決定論的収束率と,$n$サンプルに基づく経験的対象に適用した場合の(不安定性)の間の相互作用に基づいて,統計的精度を得るフレームワークを開発する。
本稿では,ガウス混合推定,非線形回帰モデル,情報的非応答モデルなど,いくつかの具体的なモデルに対する一般結果の応用について述べる。
論文 参考訳(メタデータ) (2020-05-22T22:30:52Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z) - The empirical duality gap of constrained statistical learning [115.23598260228587]
本研究では,制約付き統計学習問題(制約なし版)について,ほぼ全ての現代情報処理のコアとなる研究を行った。
本稿では, 有限次元パラメータ化, サンプル平均, 双対性理論を利用して, 無限次元, 未知分布, 制約を克服する制約付き統計問題に取り組むことを提案する。
フェアラーニングアプリケーションにおいて,この制約付き定式化の有効性と有用性を示す。
論文 参考訳(メタデータ) (2020-02-12T19:12:29Z) - Selective machine learning of doubly robust functionals [6.880360838661036]
半パラメトリックモデル上で定義された有限次元関数に関する推論を行うための選択的機械学習フレームワークを提案する。
疑似リスクの新たな定義に基づき、興味の機能を推定する際のバイアス低減を目的とした新しい選択基準を導入する。
論文 参考訳(メタデータ) (2019-11-05T19:00:03Z) - Orthogonal Statistical Learning [49.55515683387805]
人口リスクが未知のニュアンスパラメータに依存するような環境では,統計学習における非漸近的過剰リスク保証を提供する。
人口リスクがNeymanityと呼ばれる条件を満たす場合,メタアルゴリズムによって達成される過剰リスクに対するニュアンス推定誤差の影響は2次であることを示す。
論文 参考訳(メタデータ) (2019-01-25T02:21:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。