論文の概要: HOI-Ref: Hand-Object Interaction Referral in Egocentric Vision
- arxiv url: http://arxiv.org/abs/2404.09933v1
- Date: Mon, 15 Apr 2024 16:59:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 21:37:46.218570
- Title: HOI-Ref: Hand-Object Interaction Referral in Egocentric Vision
- Title(参考訳): HOI-Ref: 自我中心視における手-物体相互作用参照
- Authors: Siddhant Bansal, Michael Wray, Dima Damen,
- Abstract要約: 大規模視覚言語モデルを用いて手と物体の相互作用を理解することを目的とした自我中心画像に対するHOI-Refタスクを提案する。
HOI-Refを有効にするために、VLMのトレーニングと評価のための3.9万の質問応答ペアからなるHOI-QAデータセットをキュレートする。
以上の結果から,VLMは自己中心画像における手や物体の認識・参照に失敗することが示された。
- 参考スコア(独自算出の注目度): 25.037490786225828
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Vision Language Models (VLMs) are now the de facto state-of-the-art for a number of tasks including visual question answering, recognising objects, and spatial referral. In this work, we propose the HOI-Ref task for egocentric images that aims to understand interactions between hands and objects using VLMs. To enable HOI-Ref, we curate the HOI-QA dataset that consists of 3.9M question-answer pairs for training and evaluating VLMs. HOI-QA includes questions relating to locating hands, objects, and critically their interactions (e.g. referring to the object being manipulated by the hand). We train the first VLM for HOI-Ref on this dataset and call it VLM4HOI. Our results demonstrate that VLMs trained for referral on third person images fail to recognise and refer hands and objects in egocentric images. When fine-tuned on our egocentric HOI-QA dataset, performance improves by 27.9% for referring hands and objects, and by 26.7% for referring interactions.
- Abstract(参考訳): 大規模視覚言語モデル(VLM)は現在、視覚的質問応答、認識対象、空間的参照を含む多くのタスクの事実上の最先端である。
本稿では,手と物体のインタラクションをVLMを用いて理解することを目的とした,自我中心の画像に対するHOI-Refタスクを提案する。
HOI-Refを有効にするために、VLMのトレーニングと評価のための3.9万の質問応答ペアからなるHOI-QAデータセットをキュレートする。
HOI-QAは、手、物体、およびそれらの相互作用(例えば、手によって操作されている物体を指す)の場所に関する質問を含む。
我々は、このデータセットでHOI-Refの最初のVLMをトレーニングし、VLM4HOIと呼ぶ。
以上の結果から,VLMは自己中心画像における手や物体の認識・参照に失敗することが示された。
エゴセントリックなHOI-QAデータセットを微調整すると、手やオブジェクトの参照では27.9%、インタラクションの参照では26.7%のパフォーマンスが向上します。
関連論文リスト
- MM-Ego: Towards Building Egocentric Multimodal LLMs [72.47344411599322]
本研究の目的は,エゴセントリックな映像理解のためのマルチモーダル基盤モデルの構築である。
我々は,人間による注釈付きデータに基づいて,30秒から1時間に及ぶエゴセントリックビデオの高品質なQAサンプルを効率よく生成するデータエンジンを開発した。
我々は、629の動画と7,026の質問でエゴセントリックなQAベンチマークを作成し、様々な長さのビデオで視覚的詳細を認識・記憶するモデルの能力を評価する。
論文 参考訳(メタデータ) (2024-10-09T17:59:59Z) - Reasoning Paths with Reference Objects Elicit Quantitative Spatial Reasoning in Large Vision-Language Models [61.899791071654654]
定量的空間的推論のために設計された5つのカテゴリに271の質問があるベンチマークQ-Spatial Benchを導入する。
本課題における最先端の視覚言語モデル(VLM)の性能について検討する。
本研究では,参照オブジェクトを視覚的手がかりとして,VLMが量的空間的疑問に答えることを奨励するゼロショットプロンプト技術であるSpatialPromptを開発した。
論文 参考訳(メタデータ) (2024-09-15T16:45:42Z) - GSR-BENCH: A Benchmark for Grounded Spatial Reasoning Evaluation via Multimodal LLMs [3.2688425993442696]
画像中の物体間の空間的関係を理解する能力は、視覚的推論の重要な構成要素である。
我々は、以前リリースされたWhat'sUpデータセットを拡張し、空間関係理解のための新しい包括的評価を提案する。
論文 参考訳(メタデータ) (2024-06-19T06:15:26Z) - Benchmarks and Challenges in Pose Estimation for Egocentric Hand Interactions with Objects [89.95728475983263]
ロボティクス、AR/VR、アクション認識、モーション生成といったタスクにおいて、自己中心的な視点からこのようなインタラクションを理解することが重要である。
我々は、AmblyHandsとARCTICデータセットに基づいたHANDS23チャレンジを、慎重に設計されたトレーニングとテストの分割に基づいて設計する。
提案手法の結果と近年のリーダーボードのベースラインに基づいて,3Dハンド(オブジェクト)再構成タスクの徹底的な解析を行う。
論文 参考訳(メタデータ) (2024-03-25T05:12:21Z) - SpatialVLM: Endowing Vision-Language Models with Spatial Reasoning
Capabilities [59.39858959066982]
空間的関係についての理解と推論は、視覚質問応答(VQA)とロボット工学の基本的な能力である。
我々は,1000万枚の実画像に対して,最大20億個のVQAサンプルをスケール可能な3次元空間VQAデータ自動生成フレームワークを開発した。
このようなデータに基づいてVLMを訓練することにより、定性的空間的VQAと定量的空間的VQAの両方において、その能力を大幅に向上する。
論文 参考訳(メタデータ) (2024-01-22T18:01:01Z) - EgoTaskQA: Understanding Human Tasks in Egocentric Videos [89.9573084127155]
EgoTaskQAベンチマークは、現実世界のエゴセントリックなビデオに対する質問回答を通じて、タスク理解の重要な次元を提供する。
我々は,(1)行動依存と効果,(2)意図と目標,(3)エージェントの他者に対する信念の理解を念頭に設計する。
我々は、我々のベンチマークで最先端のビデオ推論モデルを評価し、複雑なゴール指向のエゴセントリックなビデオを理解する上で、人間の間に大きなギャップがあることを示します。
論文 参考訳(メタデータ) (2022-10-08T05:49:05Z) - Fine-Grained Egocentric Hand-Object Segmentation: Dataset, Model, and
Applications [20.571026014771828]
11,243枚のエゴセントリックな画像からなるラベル付きデータセットを,手とオブジェクトのピクセルごとのセグメンテーションラベルで提供する。
私たちのデータセットは、ハンドオブジェクトの接触境界をラベル付けした最初のものです。
我々の堅牢なハンドオブジェクトセグメンテーションモデルとデータセットは、下流の視覚アプリケーションを強化または有効化するための基本的なツールとして機能することを示します。
論文 参考訳(メタデータ) (2022-08-07T21:43:40Z) - H2O: Two Hands Manipulating Objects for First Person Interaction
Recognition [70.46638409156772]
両手操作対象のマーカーレス3Dアノテーションを用いて,エゴセントリックな対話認識のための包括的なフレームワークを提案する。
本手法は,2つの手の3次元ポーズと操作対象の6次元ポーズのアノテーションと,それぞれのフレームのインタラクションラベルを生成する。
我々のデータセットは、H2O (2 Hands and Objects)と呼ばれ、同期されたマルチビューRGB-D画像、対話ラベル、オブジェクトクラス、左右の手でのグラウンドトルース3Dポーズ、6Dオブジェクトポーズ、グラウンドトルースカメラポーズ、オブジェクトメッシュ、シーンポイントクラウドを提供する。
論文 参考訳(メタデータ) (2021-04-22T17:10:42Z) - The MECCANO Dataset: Understanding Human-Object Interactions from
Egocentric Videos in an Industrial-like Domain [20.99718135562034]
我々は,産業的な環境下での人間と物体の相互作用を研究するための,エゴセントリックビデオの最初のデータセットであるMECCANOを紹介した。
このデータセットは、人間とオブジェクトの相互作用をエゴセントリックな視点から認識するタスクのために明示的にラベル付けされている。
ベースラインの結果から,MECCANOデータセットは,産業的なシナリオにおける自我中心の人間とオブジェクトの相互作用を研究する上で,困難なベンチマークであることが示された。
論文 参考訳(メタデータ) (2020-10-12T12:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。