論文の概要: Interpolating neural network: A lightweight yet precise architecture for data training, equation solving, and parameter calibration
- arxiv url: http://arxiv.org/abs/2404.10296v4
- Date: Thu, 14 Nov 2024 23:07:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:36:48.724593
- Title: Interpolating neural network: A lightweight yet precise architecture for data training, equation solving, and parameter calibration
- Title(参考訳): 補間ニューラルネットワーク: データトレーニング、方程式解決、パラメータキャリブレーションのための軽量で正確なアーキテクチャ
- Authors: Chanwook Park, Sourav Saha, Jiachen Guo, Hantao Zhang, Xiaoyu Xie, Miguel A. Bessa, Dong Qian, Wei Chen, Gregory J. Wagner, Jian Cao, Wing Kam Liu,
- Abstract要約: 我々は、エンジニアリングソフトウェア2.0を実現するための補間ニューラルネットワーク(INN)を導入する。
INNは、従来の多層パーセプトロン(MLP)や物理インフォームドニューラルネットワーク(PINN)よりも、モデル精度に匹敵するトレーニング可能なパラメータや解決可能なパラメータが少ない。
- 参考スコア(独自算出の注目度): 6.778453409974683
- License:
- Abstract: Artificial intelligence (AI) has revolutionized software development, shifting from task-specific codes (Software 1.0) to neural network-based approaches (Software 2.0). However, applying this transition in engineering software presents challenges, including low surrogate model accuracy, the curse of dimensionality in inverse design, and rising complexity in physical simulations. We introduce an interpolating neural network (INN), grounded in interpolation theory and tensor decomposition, to realize Engineering Software 2.0 by advancing data training, partial differential equation solving, and parameter calibration. INN offers orders of magnitude fewer trainable/solvable parameters for comparable model accuracy than traditional multi-layer perceptron (MLP) or physics-informed neural networks (PINN). Demonstrated in metal additive manufacturing, INN rapidly constructs an accurate surrogate model of Laser Powder Bed Fusion (L-PBF) heat transfer simulation, achieving sub-10-micrometer resolution for a 10 mm path in under 15 minutes on a single GPU. This makes a transformative step forward across all domains essential to engineering software.
- Abstract(参考訳): 人工知能(AI)は、タスク固有のコード(Software 1.0)からニューラルネットワークベースのアプローチ(Software 2.0)に移行して、ソフトウェア開発に革命をもたらした。
しかし、この遷移をエンジニアリングソフトウェアに適用すると、低代理モデルの精度、逆設計における次元性の呪い、物理シミュレーションにおける複雑さの増大といった課題が提示される。
補間理論とテンソル分解を基礎とした補間ニューラルネットワーク(INN)を導入し,データトレーニング,偏微分方程式解法,パラメータキャリブレーションを推し進めることで,エンジニアリングソフトウェア2.0を実現する。
INNは、従来の多層パーセプトロン(MLP)や物理インフォームドニューラルネットワーク(PINN)よりも、モデル精度のトレーニング可能なパラメータや解決可能なパラメータを桁違いに少なくする。
金属添加物製造において実証されたINNは、レーザー粉体層融合(L-PBF)熱伝達シミュレーションの正確なサロゲートモデルを構築し、単一のGPUで15分未満で10mm以下のパスで10マイクロメートル以下の解像度を達成する。
これにより、エンジニアリングソフトウェアに不可欠なすべての領域にわたって、変革的な一歩を踏み出します。
関連論文リスト
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングでは、スパイクニューラルネットワーク(SNN)が推論タスクを実行し、シーケンシャルデータを含むワークロードの大幅な効率向上を提供する。
ハードウェアとソフトウェアの最近の進歩は、スパイクニューロン間で交換された各スパイクに数ビットのペイロードを埋め込むことにより、推論精度をさらに高めることを示した。
本稿では,マルチレベルSNNを用いた無線ニューロモルフィック分割計算アーキテクチャについて検討する。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - HyBNN and FedHyBNN: (Federated) Hybrid Binary Neural Networks [0.0]
新しいハイブリッドニューラルネットワークアーキテクチャHybrid Binary Neural Network (Hybrid Binary Neural Network, HyBNN)を導入する。
HyBNNは、タスク非依存、一般、完全精度の変動型オートエンコーダと、タスク固有のバイナリニューラルネットワークで構成されている。
提案システムは,入力バイナライゼーションにより,バニラバイナリニューラルネットワークを著しく上回る性能を有することを示す。
論文 参考訳(メタデータ) (2022-05-19T20:27:01Z) - Scalable algorithms for physics-informed neural and graph networks [0.6882042556551611]
物理インフォームド機械学習(PIML)は、複雑な物理的および生物学的システムをシミュレートするための有望な新しいアプローチとして登場した。
PIMLでは、物理法則を適用し、時空領域のランダムな点で評価することで得られる追加情報から、そのようなネットワークを訓練することができる。
本稿では、主にフィードフォワードニューラルネットワークと自動微分に基づく物理情報ニューラルネットワーク(PINN)を用いて、物理を機械学習に組み込む一般的なトレンドについて概説する。
論文 参考訳(メタデータ) (2022-05-16T15:46:11Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - CondenseNeXt: An Ultra-Efficient Deep Neural Network for Embedded
Systems [0.0]
畳み込みニューラルネットワーク(英: Convolutional Neural Network, CNN)は、画像センサが捉えた視覚画像の分析に広く用いられているディープニューラルネットワーク(DNN)のクラスである。
本稿では,組込みシステム上でのリアルタイム推論のために,既存のCNNアーキテクチャの性能を改善するために,深層畳み込みニューラルネットワークアーキテクチャの新しい変種を提案する。
論文 参考訳(メタデータ) (2021-12-01T18:20:52Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - Learning from Event Cameras with Sparse Spiking Convolutional Neural
Networks [0.0]
畳み込みニューラルネットワーク(CNN)は現在、コンピュータビジョン問題のデファクトソリューションとなっている。
イベントカメラとスピーキングニューラルネットワーク(SNN)を用いたエンドツーエンドの生物学的インスパイアされたアプローチを提案する。
この手法は、一般的なディープラーニングフレームワークPyTorchを使用して、イベントデータに直接スパーススパイクニューラルネットワークのトレーニングを可能にする。
論文 参考訳(メタデータ) (2021-04-26T13:52:01Z) - Binary Graph Neural Networks [69.51765073772226]
グラフニューラルネットワーク(gnns)は、不規則データに対する表現学習のための強力で柔軟なフレームワークとして登場した。
本稿では,グラフニューラルネットワークのバイナライゼーションのための異なる戦略を提示し,評価する。
モデルの慎重な設計とトレーニングプロセスの制御によって、バイナリグラフニューラルネットワークは、挑戦的なベンチマークの精度において、適度なコストでトレーニングできることを示しています。
論文 参考訳(メタデータ) (2020-12-31T18:48:58Z) - A Dual-Dimer Method for Training Physics-Constrained Neural Networks
with Minimax Architecture [6.245537312562826]
ミニマックス探索アルゴリズム(PCNN-MM)による物理制約ニューラルネットワーク(PCNN)の訓練
DualDimerと呼ばれる新しいサドルポイントアルゴリズムは、ニューラルネットワークデータの高次サドルポイントを探索するために使用される。
PCNN-MMの収束重みは従来のPCNNよりも高速である。
論文 参考訳(メタデータ) (2020-05-01T21:26:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。