論文の概要: Interpolating neural network: A novel unification of machine learning and interpolation theory
- arxiv url: http://arxiv.org/abs/2404.10296v5
- Date: Mon, 25 Nov 2024 15:00:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:17:47.185527
- Title: Interpolating neural network: A novel unification of machine learning and interpolation theory
- Title(参考訳): 補間ニューラルネットワーク:機械学習と補間理論の新しい統合
- Authors: Chanwook Park, Sourav Saha, Jiachen Guo, Hantao Zhang, Xiaoyu Xie, Miguel A. Bessa, Dong Qian, Wei Chen, Gregory J. Wagner, Jian Cao, Wing Kam Liu,
- Abstract要約: 我々は、エンジニアリングソフトウェア2.0を実現するための補間ニューラルネットワーク(INN)を導入する。
INNは、従来の多層パーセプトロン(MLP)や物理インフォームドニューラルネットワーク(PINN)よりも、モデル精度に匹敵するトレーニング可能なパラメータや解決可能なパラメータが少ない。
- 参考スコア(独自算出の注目度): 6.778453409974683
- License:
- Abstract: Artificial intelligence (AI) has revolutionized software development, shifting from task-specific codes (Software 1.0) to neural network-based approaches (Software 2.0). However, applying this transition in engineering software presents challenges, including low surrogate model accuracy, the curse of dimensionality in inverse design, and rising complexity in physical simulations. We introduce an interpolating neural network (INN), grounded in interpolation theory and tensor decomposition, to realize Engineering Software 2.0 by advancing data training, partial differential equation solving, and parameter calibration. INN offers orders of magnitude fewer trainable/solvable parameters for comparable model accuracy than traditional multi-layer perceptron (MLP) or physics-informed neural networks (PINN). Demonstrated in metal additive manufacturing, INN rapidly constructs an accurate surrogate model of Laser Powder Bed Fusion (L-PBF) heat transfer simulation, achieving sub-10-micrometer resolution for a 10 mm path in under 15 minutes on a single GPU. This makes a transformative step forward across all domains essential to engineering software.
- Abstract(参考訳): 人工知能(AI)は、タスク固有のコード(Software 1.0)からニューラルネットワークベースのアプローチ(Software 2.0)に移行して、ソフトウェア開発に革命をもたらした。
しかし、この遷移をエンジニアリングソフトウェアに適用すると、低代理モデルの精度、逆設計における次元性の呪い、物理シミュレーションにおける複雑さの増大といった課題が提示される。
補間理論とテンソル分解を基礎とした補間ニューラルネットワーク(INN)を導入し,データトレーニング,偏微分方程式解法,パラメータキャリブレーションを推し進めることで,エンジニアリングソフトウェア2.0を実現する。
INNは、従来の多層パーセプトロン(MLP)や物理インフォームドニューラルネットワーク(PINN)よりも、モデル精度のトレーニング可能なパラメータや解決可能なパラメータを桁違いに少なくする。
金属添加物製造において実証されたINNは、レーザー粉体層融合(L-PBF)熱伝達シミュレーションの正確なサロゲートモデルを構築し、単一のGPUで15分未満で10mm以下のパスで10マイクロメートル以下の解像度を達成する。
これにより、エンジニアリングソフトウェアに不可欠なすべての領域にわたって、変革的な一歩を踏み出します。
関連論文リスト
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングでは、スパイクニューラルネットワーク(SNN)が推論タスクを実行し、シーケンシャルデータを含むワークロードの大幅な効率向上を提供する。
ハードウェアとソフトウェアの最近の進歩は、スパイクニューロン間で交換された各スパイクに数ビットのペイロードを埋め込むことにより、推論精度をさらに高めることを示した。
本稿では,マルチレベルSNNを用いた無線ニューロモルフィック分割計算アーキテクチャについて検討する。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANAは、混合信号ニューロモルフィック回路の特性を考慮に入れたスパイクニューラルネットワークシミュレータである。
その結果,ソフトウェアでトレーニングしたスパイクニューラルネットワークの挙動を,信頼性の高い推定結果として提示した。
論文 参考訳(メタデータ) (2024-09-23T11:16:46Z) - Liquid Fourier Latent Dynamics Networks for fast GPU-based numerical simulations in computational cardiology [0.0]
複素測地上での高次非線形微分方程式の多スケールおよび多物理集合に対するパラメータ化時空間サロゲートモデルを作成するために、Latent Dynamics Networks(LDNets)の拡張を提案する。
LFLDNetは、時間的ダイナミクスのために神経学的にインスパイアされたスパースな液体ニューラルネットワークを使用し、時間進行のための数値ソルバの要求を緩和し、パラメータ、精度、効率、学習軌道の点で優れたパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2024-08-19T09:14:25Z) - Physics-informed MeshGraphNets (PI-MGNs): Neural finite element solvers
for non-stationary and nonlinear simulations on arbitrary meshes [13.41003911618347]
PI-MGNは、PINNとMGNを組み合わせて任意のメッシュ上の非定常および非線形偏微分方程式(PDE)を解くハイブリッドアプローチである。
結果は、モデルが大規模で複雑なメッシュにうまくスケールしていることを示しているが、小さなジェネリックメッシュでのみトレーニングされている。
論文 参考訳(メタデータ) (2024-02-16T13:34:51Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Biologically Plausible Learning on Neuromorphic Hardware Architectures [27.138481022472]
ニューロモルフィックコンピューティング(Neuromorphic Computing)は、アナログメモリの計算によってこの不均衡に直面している新興パラダイムである。
この研究は、異なる学習アルゴリズムがCompute-In-Memoryベースのハードウェアに与える影響を初めて比較し、その逆も行った。
論文 参考訳(メタデータ) (2022-12-29T15:10:59Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - DLDNN: Deterministic Lateral Displacement Design Automation by Neural
Networks [1.8365768330479992]
本稿では、決定論的側方変位(DLD)問題に対処する高速多目的設計自動化プラットフォームについて検討する。
畳み込みニューラルネットワークと人工ニューラルネットワークを用いて、様々なDLD構成の速度場と臨界径を学習した。
開発ツールは12の臨界条件でテストされ、4%未満の誤差で確実に実行された。
論文 参考訳(メタデータ) (2022-08-30T14:38:17Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - A Dual-Dimer Method for Training Physics-Constrained Neural Networks
with Minimax Architecture [6.245537312562826]
ミニマックス探索アルゴリズム(PCNN-MM)による物理制約ニューラルネットワーク(PCNN)の訓練
DualDimerと呼ばれる新しいサドルポイントアルゴリズムは、ニューラルネットワークデータの高次サドルポイントを探索するために使用される。
PCNN-MMの収束重みは従来のPCNNよりも高速である。
論文 参考訳(メタデータ) (2020-05-01T21:26:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。