論文の概要: The application of Augmented Reality (AR) in Remote Work and Education
- arxiv url: http://arxiv.org/abs/2404.10579v1
- Date: Tue, 16 Apr 2024 14:04:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 16:34:29.962931
- Title: The application of Augmented Reality (AR) in Remote Work and Education
- Title(参考訳): リモートワークと教育におけるAR(Augmented Reality)の適用
- Authors: Keqin Li, Peng Xirui, Jintong Song, Bo Hong, Jin Wang,
- Abstract要約: Augmented Reality(AR)技術は、従来の作業モードや教育方法を徐々に変えつつある。
本稿では,リモートワークと教育におけるAR技術の応用可能性と実効性について考察する。
- 参考スコア(独自算出の注目度): 9.275489976839754
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid advancement of technology, Augmented Reality (AR) technology, known for its ability to deeply integrate virtual information with the real world, is gradually transforming traditional work modes and teaching methods. Particularly in the realms of remote work and online education, AR technology demonstrates a broad spectrum of application prospects. This paper delves into the application potential and actual effects of AR technology in remote work and education. Through a systematic literature review, this study outlines the key features, advantages, and challenges of AR technology. Based on theoretical analysis, it discusses the scientific basis and technical support that AR technology provides for enhancing remote work efficiency and promoting innovation in educational teaching models. Additionally, by designing an empirical research plan and analyzing experimental data, this article reveals the specific performance and influencing factors of AR technology in practical applications. Finally, based on the results of the experiments, this research summarizes the application value of AR technology in remote work and education, looks forward to its future development trends, and proposes forward-looking research directions and strategic suggestions, offering empirical foundation and theoretical guidance for further promoting the in-depth application of AR technology in related fields.
- Abstract(参考訳): テクノロジーの急速な進歩により、バーチャル情報を現実世界と深く統合する能力で知られる拡張現実(Augmented Reality, AR)技術は、徐々に伝統的な作業モードや教育方法を変えつつある。
特にリモートワークとオンライン教育の領域では、AR技術は幅広い応用可能性を示している。
本稿では,リモートワークと教育におけるAR技術の応用可能性と実効性について考察する。
系統的な文献レビューを通じて、この研究はAR技術の鍵となる特徴、利点、課題を概説する。
理論的分析に基づき、AR技術が遠隔作業の効率化と教育モデルの革新を促進するための科学的基盤と技術的支援について論じる。
さらに,実証研究計画を設計し,実験データを分析することにより,実用化におけるAR技術の具体的性能と影響要因を明らかにする。
最後に,実験結果に基づいて,遠隔作業・教育におけるAR技術の応用価値を概説し,今後の開発動向を展望し,先進的な研究の方向性と戦略的提案を提案し,その基礎と理論的ガイダンスを提供し,関連分野におけるAR技術の深層的応用をさらに促進させる。
関連論文リスト
- Diffusion-Based Visual Art Creation: A Survey and New Perspectives [51.522935314070416]
本調査は,拡散に基づく視覚芸術創造の新たな領域を探求し,その発展を芸術的,技術的両面から検討する。
本研究は,芸術的要件が技術的課題にどのように変換されるかを明らかにし,視覚芸術創造における拡散法の設計と応用を強調した。
我々は、AIシステムが芸術的知覚と創造性において人間の能力をエミュレートし、潜在的に増強するメカニズムに光を当てることを目指している。
論文 参考訳(メタデータ) (2024-08-22T04:49:50Z) - AI Foundation Models in Remote Sensing: A Survey [6.036426846159163]
本稿では,リモートセンシング領域における基礎モデルの包括的調査を行う。
コンピュータビジョンおよびドメイン固有タスクにおけるそれらの応用に基づいて、これらのモデルを分類する。
これらの基盤モデルによって達成された、新しいトレンドと大きな進歩を強調します。
論文 参考訳(メタデータ) (2024-08-06T22:39:34Z) - Teaching Design Science as a Method for Effective Research Development [0.24578723416255752]
デザインサイエンスリサーチ(DSR)方法論の適用は、情報システム(IS)とソフトウェア工学研究の一般的な作業資源になりつつある。
この章には、DSR、教育方法論、学習目的、レコメンデーションの例が含まれている。
我々は,デザインサイエンスのユーザ体験に関するデータ収集を目的とした調査成果を作成した。
論文 参考訳(メタデータ) (2024-07-13T10:43:06Z) - Research on the Application of Computer Vision Based on Deep Learning in Autonomous Driving Technology [9.52658065214428]
本稿では、画像認識、リアルタイム目標追跡・分類、環境認識・意思決定支援、経路計画・ナビゲーションにおけるディープラーニングの適用について詳細に分析する。
提案システムでは,画像認識,目標追跡,分類の精度が98%を超え,高い性能と実用性を示す。
論文 参考訳(メタデータ) (2024-06-01T16:41:24Z) - Networking Systems for Video Anomaly Detection: A Tutorial and Survey [55.28514053969056]
ビデオ異常検出(VAD)は人工知能(AI)コミュニティにおける基本的な研究課題である。
本稿では,各種深層学習駆動型VAD経路の基本前提,学習フレームワーク,適用シナリオについて述べる。
我々は、産業用IoTおよびスマート都市における最新のNSVAD研究と、デプロイ可能なNSVADのためのエンドクラウド共同アーキテクチャを紹介します。
論文 参考訳(メタデータ) (2024-05-16T02:00:44Z) - Neural Radiance Field-based Visual Rendering: A Comprehensive Review [0.6047429555885261]
近年、Neural Radiance Fields (NeRF) はコンピュータビジョンとグラフィックスの分野で顕著な進歩を遂げている。
NeRFは学術界で継続的な研究ブームを引き起こしている。
本総説では,過去2年間にNeRFに関する研究文献を詳細に分析した。
論文 参考訳(メタデータ) (2024-03-31T15:18:38Z) - A Disruptive Research Playbook for Studying Disruptive Innovations [11.619658523864686]
本稿では、説得力があり社会的に関係のある研究課題を定式化するためのガイドを提供するための研究プレイブックを提案する。
私たちは、AIとAR/VRの2つの破壊的なテクノロジの影響を疑問視するために使用することができることを示しています。
論文 参考訳(メタデータ) (2024-02-20T19:13:36Z) - Computation-efficient Deep Learning for Computer Vision: A Survey [121.84121397440337]
ディープラーニングモデルは、さまざまな視覚的知覚タスクにおいて、人間レベルのパフォーマンスに到達または超えた。
ディープラーニングモデルは通常、重要な計算資源を必要とし、現実のシナリオでは非現実的な電力消費、遅延、または二酸化炭素排出量につながる。
新しい研究の焦点は計算効率のよいディープラーニングであり、推論時の計算コストを最小限に抑えつつ、良好な性能を達成することを目指している。
論文 参考訳(メタデータ) (2023-08-27T03:55:28Z) - A Comprehensive Survey of Data Augmentation in Visual Reinforcement Learning [53.35317176453194]
データ拡張(DA)は、サンプル効率と一般化可能なポリシーを取得するために視覚的RLで広く使われている技術である。
本稿では、視覚的RLで使用されている既存の拡張技法の原則的な分類法を提案し、拡張データをどのように活用するかを詳細に議論する。
視覚的RLにおけるDAに関する最初の総合的な調査として、この研究は、この新興分野に貴重なガイダンスを提供するものと期待されている。
論文 参考訳(メタデータ) (2022-10-10T11:01:57Z) - Modern Augmented Reality: Applications, Trends, and Future Directions [160.03363259015072]
拡張現実(AR、Augmented Reality)は、コンピュータビジョンとコンピュータグラフィックスの交差点において、比較的古いがトレンドとなっている分野の一つである。
この研究は、アプリケーションレベルでも技術的な観点からも、モダンな拡張現実の概要を提供しようとしている。
論文 参考訳(メタデータ) (2022-02-18T22:12:37Z) - A survey on applications of augmented, mixed and virtual reality for
nature and environment [114.4879749449579]
拡張現実(AR)、仮想現実(VR)、複合現実(MR)は、彼らが提供できるエンゲージメントとエンリッチな体験のために、大きな潜在能力を持つ技術である。
しかし、環境応用の分野でAR、VR、MRがもたらす可能性はまだ広く研究されていない。
本研究は,環境に有利な既存のAR/VR/MRアプリケーションを発見・分類したり,環境問題に対する意識を高めることを目的とした調査の結果を示す。
論文 参考訳(メタデータ) (2020-08-27T09:59:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。