論文の概要: The Path To Autonomous Cyber Defense
- arxiv url: http://arxiv.org/abs/2404.10788v1
- Date: Fri, 12 Apr 2024 19:51:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 18:22:00.993268
- Title: The Path To Autonomous Cyber Defense
- Title(参考訳): 自律型サイバー防衛への道
- Authors: Sean Oesch, Phillipe Austria, Amul Chaulagain, Brian Weber, Cory Watson, Matthew Dixson, Amir Sadovnik,
- Abstract要約: 被告はネットワークに対する攻撃の数と規模に圧倒されている。
我々は,サイバー防衛ライフサイクルにおける重要なステップを自動化し,防衛員を増強できる自律型サイバーエージェントを提案する。
- 参考スコア(独自算出の注目度): 4.221619479687068
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Defenders are overwhelmed by the number and scale of attacks against their networks.This problem will only be exacerbated as attackers leverage artificial intelligence to automate their workflows. We propose a path to autonomous cyber agents able to augment defenders by automating critical steps in the cyber defense life cycle.
- Abstract(参考訳): ディフェンダーはネットワークに対する攻撃の数と規模に圧倒され、攻撃者は人工知能を利用してワークフローを自動化することで、この問題は悪化する。
我々は,サイバー防衛ライフサイクルにおける重要なステップを自動化し,防衛員を増強できる自律型サイバーエージェントを提案する。
関連論文リスト
- Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics [70.93622520400385]
本稿では,VLAに基づくロボットシステムのロバスト性を体系的に評価する。
本研究では,ロボット行動の不安定化に空間的基盤を活用する,標的のない位置認識型攻撃目標を提案する。
また、カメラの視野内に小さなカラフルなパッチを配置し、デジタル環境と物理環境の両方で効果的に攻撃を実行する逆パッチ生成アプローチを設計する。
論文 参考訳(メタデータ) (2024-11-18T01:52:20Z) - Countering Autonomous Cyber Threats [40.00865970939829]
ファンデーションモデルは、サイバードメイン内で広く、特に二元的関心事を提示します。
近年の研究では、これらの先進的なモデルが攻撃的なサイバースペース操作を通知または独立に実行する可能性を示している。
この研究は、孤立したネットワークでマシンを妥協する能力について、最先端のいくつかのFMを評価し、そのようなAIによる攻撃を倒す防御メカニズムを調査する。
論文 参考訳(メタデータ) (2024-10-23T22:46:44Z) - Multi-Agent Actor-Critics in Autonomous Cyber Defense [0.5261718469769447]
マルチエージェントディープ強化学習(MADRL)は、自律型サイバーオペレーションの有効性とレジリエンスを高めるための有望なアプローチである。
シミュレーションサイバー攻撃シナリオにおいて,各エージェントが迅速に学習し,MADRLを用いて自律的に脅威に対処できることを実証する。
論文 参考訳(メタデータ) (2024-10-11T15:15:09Z) - Is Generative AI the Next Tactical Cyber Weapon For Threat Actors? Unforeseen Implications of AI Generated Cyber Attacks [0.0]
本稿では,AIの誤用によるエスカレート脅威,特にLarge Language Models(LLMs)の使用について述べる。
一連の制御された実験を通じて、これらのモデルがどのようにして倫理的およびプライバシー保護を回避し、効果的にサイバー攻撃を発生させるかを実証する。
私たちはまた、サイバー攻撃の自動化と実行のために特別に設計されたカスタマイズされた微調整のLLMであるOccupy AIを紹介します。
論文 参考訳(メタデータ) (2024-08-23T02:56:13Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
本稿では,現在のAVの状況を調べることによって,自律運転における本質的なリスクを評価する。
AVの利点と、現実のシナリオにおける潜在的なセキュリティ課題との微妙なバランスを強調した、特定のクレームを開発する。
論文 参考訳(メタデータ) (2024-05-14T09:42:21Z) - Physical Backdoor Attack can Jeopardize Driving with Vision-Large-Language Models [53.701148276912406]
Vision-Large-Language-models (VLMs) は自動運転において大きな応用可能性を持っている。
BadVLMDriverは、物理的オブジェクトを使用して実際に起動できる自動運転のためのVLMに対する最初のバックドア攻撃である。
BadVLMDriverは、赤い風船を持った歩行者に突如、加速を誘導する攻撃の成功率を92%達成する。
論文 参考訳(メタデータ) (2024-04-19T14:40:38Z) - Automated Cyber Defence: A Review [0.0]
Automated Cyber Defense内の研究は、シーケンシャルな意思決定エージェントを通じて、ネットワークされたシステムを自律的に防御することで、インテリジェンス対応の開発と実現を可能にする。
本稿では,ACO(Autonomous Cyber Operation)とACO(Autonomous Cyber Operation)の2つのサブ領域に分割して,自動サイバー防衛の展開を包括的に詳述する。
この要件分析は、ACO Gymsを、現実のネットワークシステムに自動エージェントをデプロイするための総合的な目標として批判するためにも用いられる。
論文 参考訳(メタデータ) (2023-03-08T22:37:50Z) - AI Security Threats against Pervasive Robotic Systems: A Course for Next
Generation Cybersecurity Workforce [0.9137554315375919]
ロボティクス、自動化、および関連する人工知能(AI)システムは、セキュリティ、安全性、正確性、信頼に関する懸念を広めている。
これらのシステムのセキュリティは、プライバシーの侵害、重要な操作妨害、身体の危害につながるサイバー攻撃を防ぐためにますます重要になっている。
このコースの説明には、"広汎なロボットシステムに対するAIセキュリティ脅威"に関する7つの自己完結型および適応型モジュールの詳細が含まれている。
論文 参考訳(メタデータ) (2023-02-15T21:21:20Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
ネットワーク分類器に対するブラックボックス攻撃について検討する。
我々は、アタッカー・ディフェンダーの固定点がそれ自体、複雑な位相遷移を持つ一般サムゲームであると主張する。
攻撃防御力学の研究には連続的な学習手法が必要であることを示す。
論文 参考訳(メタデータ) (2021-11-23T23:42:16Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
本研究では,エージェントの訓練に深層強化学習を用いることで,悪意あるアクターの潜在的な脅威を実証する。
本稿では,最先端の強化学習アルゴリズムを用いて,局所的な特権エスカレーションを行うエージェントを提案する。
我々のエージェントは、実際の攻撃センサーデータを生成し、侵入検知システムの訓練と評価に利用できる。
論文 参考訳(メタデータ) (2021-10-04T12:20:46Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
我々は、攻撃者が汎用人工知能システムにおける決定を制御できる新しい敵の摂動について研究する。
敵対的なデータ修正とは対照的に、ここで考慮する攻撃メカニズムには、AIシステム自体の変更が含まれる。
論文 参考訳(メタデータ) (2021-06-26T10:50:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。